List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1204985/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature, 2008, 452, 198-201.	27.8	1,138
2	From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature, 2009, 461, 74-77.	27.8	859
3	A nanomechanical device based on the Bâ \in "Z transition of DNA. Nature, 1999, 397, 144-146.	27.8	817
4	Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature, 2000, 407, 493-496.	27.8	704
5	Designed Two-Dimensional DNA Holliday Junction Arrays Visualized by Atomic Force Microscopy. Journal of the American Chemical Society, 1999, 121, 5437-5443.	13.7	507
6	Self-Assembly of Hexagonal DNA Two-Dimensional (2D) Arrays. Journal of the American Chemical Society, 2005, 127, 12202-12203.	13.7	425
7	A DNAzyme That Walks Processively and Autonomously along a One-Dimensional Track. Angewandte Chemie - International Edition, 2005, 44, 4355-4358.	13.8	377
8	Complex wireframe DNA origami nanostructures with multi-arm junction vertices. Nature Nanotechnology, 2015, 10, 779-784.	31.5	349
9	Tensegrity:Â Construction of Rigid DNA Triangles with Flexible Four-Arm DNA Junctions. Journal of the American Chemical Society, 2004, 126, 2324-2325.	13.7	346
10	Assembly of Borromean rings from DNA. Nature, 1997, 386, 137-138.	27.8	307
11	Six-Helix Bundles Designed from DNA. Nano Letters, 2005, 5, 661-665.	9.1	285
12	DNA-Encoded Self-Assembly of Gold Nanoparticles into One-Dimensional Arrays. Angewandte Chemie - International Edition, 2005, 44, 3582-3585.	13.8	271
13	Molecular Gears:  A Pair of DNA Circles Continuously Rolls against Each Other. Journal of the American Chemical Society, 2004, 126, 11410-11411.	13.7	254
14	An Autonomous DNA Nanomotor Powered by a DNA Enzyme. Angewandte Chemie - International Edition, 2004, 43, 3554-3557.	13.8	252
15	Conformational flexibility facilitates self-assembly of complex DNA nanostructures. Proceedings of the United States of America, 2008, 105, 10665-10669.	7.1	249
16	DNA-Templated Fabrication of 1D Parallel and 2D Crossed Metallic Nanowire Arrays. Nano Letters, 2003, 3, 1545-1548.	9.1	248
17	A synthetic DNA motor that transports nanoparticles along carbon nanotubes. Nature Nanotechnology, 2014, 9, 39-43.	31.5	238
18	Highly Connected Two-Dimensional Crystals of DNA Six-Point-Stars. Journal of the American Chemical Society, 2006, 128, 15978-15979.	13.7	192

#	Article	IF	CITATIONS
19	A DNA Nanomachine Based on a Duplex–Triplex Transition. Angewandte Chemie - International Edition, 2004, 43, 5335-5338.	13.8	181
20	Bottom-up Assembly of RNA Arrays and Superstructures as Potential Parts in Nanotechnology. Nano Letters, 2004, 4, 1717-1723.	9.1	180
21	DNA Nanotubes as Combinatorial Vehicles for Cellular Delivery. Biomacromolecules, 2008, 9, 3039-3043.	5.4	176
22	Reconfiguration of DNA molecular arrays driven by information relay. Science, 2017, 357, .	12.6	160
23	Sequence Symmetry as a Tool for Designing DNA Nanostructures. Angewandte Chemie - International Edition, 2005, 44, 6694-6696.	13.8	158
24	A Prototype Two-Dimensional Capillary Electrophoresis System Fabricated in Poly(dimethylsiloxane). Analytical Chemistry, 2002, 74, 1772-1778.	6.5	153
25	Approaching The Limit: Can One DNA Oligonucleotide Assemble into Large Nanostructures?. Angewandte Chemie - International Edition, 2006, 45, 1942-1945.	13.8	150
26	Self-Assembly of Molecule-like Nanoparticle Clusters Directed by DNA Nanocages. Journal of the American Chemical Society, 2015, 137, 4320-4323.	13.7	136
27	DNA-Directed Assembly of Single-Wall Carbon Nanotubes. Journal of the American Chemical Society, 2007, 129, 8696-8697.	13.7	123
28	Surface-Mediated DNA Self-Assembly. Journal of the American Chemical Society, 2009, 131, 13248-13249.	13.7	120
29	Synergistic self-assembly of RNA and DNA molecules. Nature Chemistry, 2010, 2, 1050-1055.	13.6	117
30	Cascade Signal Amplification for DNA Detection. ChemBioChem, 2006, 7, 1862-1864.	2.6	111
31	Symmetry Controls the Face Geometry of DNA Polyhedra. Journal of the American Chemical Society, 2009, 131, 1413-1415.	13.7	110
32	Antibody Nanoarrays with a Pitch of â^¼20 Nanometers. Journal of the American Chemical Society, 2006, 128, 12664-12665.	13.7	99
33	Putting a Brake on an Autonomous DNA Nanomotor. Journal of the American Chemical Society, 2004, 126, 8626-8627.	13.7	97
34	Design Principles of DNA Enzyme-Based Walkers: Translocation Kinetics and Photoregulation. Journal of the American Chemical Society, 2015, 137, 9429-9437.	13.7	97
35	Molecular Lithography with DNA Nanostructures. Angewandte Chemie - International Edition, 2004, 43, 4068-4070.	13.8	94
36	On the Chirality of Selfâ€Assembled DNA Octahedra. Angewandte Chemie - International Edition, 2010, 49, 748-751.	13.8	90

#	Article	IF	CITATIONS
37	DNAâ€Directed Threeâ€Dimensional Protein Organization. Angewandte Chemie - International Edition, 2012, 51, 3382-3385.	13.8	88
38	DNA Nanocages Swallow Gold Nanoparticles (AuNPs) to Form AuNP@DNA Cage Core–Shell Structures. ACS Nano, 2014, 8, 1130-1135.	14.6	87
39	Self-Assembly of Responsive Multilayered DNA Nanocages. Journal of the American Chemical Society, 2015, 137, 1730-1733.	13.7	86
40	New motifs in DNA nanotechnology. Nanotechnology, 1998, 9, 257-273.	2.6	74
41	In vivo production of RNA nanostructures via programmed folding of single-stranded RNAs. Nature Communications, 2018, 9, 2196.	12.8	72
42	A Smart DNA Tetrahedron That Isothermally Assembles or Dissociates in Response to the Solution pH Value Changes. Biomacromolecules, 2013, 14, 1711-1714.	5.4	71
43	A DNA Crystal Designed to Contain Two Molecules per Asymmetric Unit. Journal of the American Chemical Society, 2010, 132, 15471-15473.	13.7	69
44	DNA in a modern world. Chemical Society Reviews, 2011, 40, 5633.	38.1	69
45	Paranemic Crossover DNA: There and Back Again. Chemical Reviews, 2019, 119, 6273-6289.	47.7	69
46	Construction of RNA nanocages by re-engineering the packaging RNA of Phi29 bacteriophage. Nature Communications, 2014, 5, 3890.	12.8	66
47	De novo design of an RNA tile that self-assembles into a homo-octameric nanoprism. Nature Communications, 2015, 6, 5724.	12.8	64
48	A device that operates within a self-assembled 3D DNA crystal. Nature Chemistry, 2017, 9, 824-827.	13.6	64
49	A poly(thymine)–melamine duplex for the assembly of DNA nanomaterials. Nature Materials, 2020, 19, 1012-1018.	27.5	62
50	A pH-responsive cyclodextrin-based hybrid nanosystem as a nonviral vector for gene delivery. Biomaterials, 2013, 34, 4159-4172.	11.4	59
51	DNA self-assembly: from 2D to 3D. Faraday Discussions, 2009, 143, 221.	3.2	58
52	pHâ€Induced Reversible Expansion/Contraction of Gold Nanoparticle Aggregates. Small, 2008, 4, 2191-2194.	10.0	57
53	Reprogramming DNA-Directed Reactions on the Basis of a DNA Conformational Change. Journal of the American Chemical Society, 2004, 126, 13240-13241.	13.7	56
54	Dissections:Â Self-Assembled Aggregates That Spontaneously Reconfigure Their Structures When Their Environment Changes. Journal of the American Chemical Society, 2002, 124, 14508-14509.	13.7	54

#	Article	IF	CITATIONS
55	Rational Design and Self-Assembly of Two-Dimensional, Dodecagonal DNA Quasicrystals. Journal of the American Chemical Society, 2019, 141, 4248-4251.	13.7	54
56	Mesoscale Self-Assembly:Â Capillary Interactions When Positive and Negative Menisci Have Similar Amplitudes. Langmuir, 2003, 19, 2206-2214.	3.5	52
57	Multimerization-Cyclization of DNA Fragments as a Method of Conformational Analysis. Biophysical Journal, 2000, 79, 2692-2704.	0.5	51
58	Postâ€Assembly Stabilization of Rationally Designed DNA Crystals. Angewandte Chemie - International Edition, 2015, 54, 9936-9939.	13.8	50
59	Retrosynthetic Analysis-Guided Breaking Tile Symmetry for the Assembly of Complex DNA Nanostructures. Journal of the American Chemical Society, 2016, 138, 13579-13585.	13.7	49
60	Branched kissing loops for the construction of diverse RNA homooligomeric nanostructures. Nature Chemistry, 2020, 12, 249-259.	13.6	49
61	Capturing intracellular oncogenic microRNAs with self-assembled DNA nanostructures for microRNA-based cancer therapy. Chemical Science, 2018, 9, 7562-7568.	7.4	48
62	An Organic Semiconductor Organized into 3D DNA Arrays by "Bottomâ€up―Rational Design. Angewandte Chemie - International Edition, 2017, 56, 6445-6448.	13.8	47
63	Self-Assembled DNA Crystals: The Impact on Resolution of 5′-Phosphates and the DNA Source. Nano Letters, 2013, 13, 793-797.	9.1	46
64	Kidney-Targeted Cytosolic Delivery of siRNA Using a Small-Sized Mirror DNA Tetrahedron for Enhanced Potency. ACS Central Science, 2020, 6, 2250-2258.	11.3	46
65	Universal pHâ€Responsive and Metalâ€ŀonâ€Free Selfâ€Assembly of DNA Nanostructures. Angewandte Chemie - International Edition, 2018, 57, 6892-6895.	13.8	44
66	Highly tumor-specific DNA nanostructures discovered by in vivo screening of a nucleic acid cage library and their applications in tumor-targeted drug delivery. Biomaterials, 2019, 195, 1-12.	11.4	44
67	Electrical conduction in 7 nm wires constructed on λ-DNA. Nanotechnology, 2006, 17, 2752-2757.	2.6	43
68	Making Engineered 3D DNA Crystals Robust. Journal of the American Chemical Society, 2019, 141, 15850-15855.	13.7	43
69	DNAzyme amplification of molecular beacon signal. Talanta, 2005, 67, 532-537.	5.5	42
70	DNA Polyhedra with T-Linkage. ACS Nano, 2012, 6, 5138-5142.	14.6	42
71	Designing Higher Resolution Self-Assembled 3D DNA Crystals via Strand Terminus Modifications. ACS Nano, 2019, 13, 7957-7965.	14.6	40
72	Reversibly Switching the Surface Porosity of a DNA Tetrahedron. Journal of the American Chemical Society, 2012, 134, 11998-12001.	13.7	39

#	Article	IF	CITATIONS
73	Double-stranded DNA homology produces a physical signature. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12547-12552.	7.1	38
74	DNA-Templated Fabrication of Two-Dimensional Metallic Nanostructures by Thermal Evaporation Coating. Journal of the American Chemical Society, 2011, 133, 1742-1744.	13.7	38
75	Regulation of vascular smooth muscle cell autophagy by DNA nanotube-conjugated mTOR siRNA. Biomaterials, 2015, 67, 137-150.	11.4	38
76	Isothermal Self-Assembly of Spermidine–DNA Nanostructure Complex as a Functional Platform for Cancer Therapy. ACS Applied Materials & Interfaces, 2018, 10, 15504-15516.	8.0	38
77	Two-Dimensional (2D) DNA Crystals Assembled from Two DNA Strands. Biomacromolecules, 2005, 6, 2943-2945.	5.4	37
78	Synchronization of Two Assembly Processes To Build Responsive DNA Nanostructures. Angewandte Chemie - International Edition, 2014, 53, 8402-8405.	13.8	34
79	The absence of tertiary interactions in a selfâ€assembled DNA crystal structure. Journal of Molecular Recognition, 2012, 25, 234-237.	2.1	32
80	Stabilisation of self-assembled DNA crystals by triplex-directed photo-cross-linking. Chemical Communications, 2016, 52, 8014-8017.	4.1	32
81	ATP-Triggered, Allosteric Self-Assembly of DNA Nanostructures. Journal of the American Chemical Society, 2020, 142, 665-668.	13.7	32
82	Sequence dependence of branch migratory minima. Journal of Molecular Biology, 1998, 282, 59-70.	4.2	31
83	DNA as Nanoscale Building Blocks. Journal of Nanoscience and Nanotechnology, 2005, 5, 1954-1963.	0.9	30
84	Patterning Nanoparticles with DNA Molds. ACS Applied Materials & amp; Interfaces, 2019, 11, 13853-13858.	8.0	30
85	Regulating DNA Selfâ€assembly by DNA–Surface Interactions. ChemBioChem, 2017, 18, 2404-2407.	2.6	29
86	Rational Design of pHâ€Responsive DNA Motifs with General Sequence Compatibility. Angewandte Chemie - International Edition, 2019, 58, 16405-16410.	13.8	28
87	Aligning One-Dimensional DNA Duplexes into Two-Dimensional Crystals. Journal of the American Chemical Society, 2007, 129, 14134-14135.	13.7	27
88	Regulation on Toll-like Receptor 4 and Cell Barrier Function by Rab26 siRNA-loaded DNA Nanovector in Pulmonary Microvascular Endothelial Cells. Theranostics, 2017, 7, 2537-2554.	10.0	26
89	Inhibition of hypoxia-induced proliferation of pulmonary arterial smooth muscle cells by a mTOR siRNA-loaded cyclodextrin nanovector. Biomaterials, 2014, 35, 4401-4416.	11.4	25
90	Structural Transformation: Assembly of an Otherwise Inaccessible DNA Nanocage. Angewandte Chemie - International Edition, 2015, 54, 5990-5993.	13.8	25

#	Article	IF	CITATIONS
91	Targeted Delivery of Rab26 siRNA with Precisely Tailored DNA Prism for Lung Cancer Therapy. ChemBioChem, 2019, 20, 1139-1144.	2.6	25
92	Selfâ€Assembly of Wireframe DNA Nanostructures from Junction Motifs. Angewandte Chemie - International Edition, 2019, 58, 12123-12127.	13.8	24
93	Selfâ€Assembly of DNA Nanotubes with Defined Diameters and Lengths. Small, 2014, 10, 855-858.	10.0	23
94	Approaching the Limit: Can One DNA Strand Assemble into Defined Nanostructures?. Langmuir, 2014, 30, 5859-5862.	3.5	23
95	Transformable Helical Self-Assembly for Cancerous Golgi Apparatus Disruption. Nano Letters, 2021, 21, 8455-8465.	9.1	22
96	Self-assembled triangular DNA nanoparticles are an efficient system for gene delivery. Journal of Controlled Release, 2016, 233, 126-135.	9.9	21
97	Effects of chain flexibility on the properties of DNA hydrogels. Soft Matter, 2016, 12, 5537-5541.	2.7	21
98	Modulating Selfâ€Assembly of DNA Crystals with Rationally Designed Agents. Angewandte Chemie - International Edition, 2018, 57, 16529-16532.	13.8	21
99	Powering â‰^50 µm Motion by a Molecular Event in DNA Crystals. Advanced Materials, 2022, 34, e2200441.	21.0	21
100	Human telomeric DNA sequences have a peroxidase apoenzyme activity. Molecular BioSystems, 2009, 5, 238.	2.9	20
101	Self-Assembly of 3D DNA Crystals Containing a Torsionally Stressed Component. Cell Chemical Biology, 2017, 24, 1401-1406.e2.	5.2	20
102	Selfâ€Assembly of Microparticles by Supramolecular Homopolymerization of One Component DNA Molecule. Small, 2019, 15, e1805552.	10.0	20
103	Preparation of branched structures with long DNA duplex arms. Organic and Biomolecular Chemistry, 2006, 4, 3404.	2.8	19
104	Self-assembly of DNA nanoprisms with only two component strands. Chemical Communications, 2013, 49, 2807.	4.1	19
105	ATG101 Single-Stranded Antisense RNA-Loaded Triangular DNA Nanoparticles Control Human Pulmonary Endothelial Growth via Regulation of Cell Macroautophagy. ACS Applied Materials & Interfaces, 2017, 9, 42544-42555.	8.0	18
106	Programming DNA Self-Assembly by Geometry. Journal of the American Chemical Society, 2022, 144, 8741-8745.	13.7	18
107	One DNA strand homo-polymerizes into defined nanostructures. Nanoscale, 2017, 9, 10601-10605.	5.6	17
108	A minimalist's approach for DNA nanoconstructions. Advanced Drug Delivery Reviews, 2019, 147, 22-28.	13.7	17

#	Article	IF	CITATIONS
109	3D Fractal DNA Assembly from Coding, Geometry and Protection. Natural Computing, 2004, 3, 235-252.	3.0	16
110	3D Hexagonal Arrangement of DNA Tensegrity Triangles. ACS Nano, 2021, 15, 16788-16793.	14.6	16
111	Structure-Guided Designing Pre-Organization in Bivalent Aptamers. Journal of the American Chemical Society, 2022, 144, 4507-4514.	13.7	16
112	DNA-based nanofabrications. Microscopy Research and Technique, 2007, 70, 522-529.	2.2	15
113	The study of the paranemic crossover (PX) motif in the context of self-assembly of DNA 2D crystals. Organic and Biomolecular Chemistry, 2016, 14, 7187-7190.	2.8	15
114	The Emergence of Complexity: Lessons from DNA. PLoS Biology, 2004, 2, e431.	5.6	14
115	Cationâ€Dependent Switching of DNA Nanostructures. Macromolecular Bioscience, 2007, 7, 1060-1064.	4.1	14
116	Guest Editorial: Nucleic Acid Nanotechnology. Accounts of Chemical Research, 2014, 47, 1643-1644.	15.6	14
117	No braiding of holliday junctions in positively supercoiled DNA molecules 1 1Edited by I. Tinoco. Journal of Molecular Biology, 1999, 294, 683-699.	4.2	13
118	Two Dimensions and Two States in DNA Nanotechnology. Journal of Biomolecular Structure and Dynamics, 2000, 17, 253-262.	3.5	13
119	Fluorescence and Energy Transfer in Dye-Labeled DNA Crystals. Journal of Physical Chemistry B, 2016, 120, 12287-12292.	2.6	13
120	Two-Dimensional Hexagonally Oriented CdCl2·H2O Nanorod Assembly: Formation and Replication. Langmuir, 2004, 20, 8078-8082.	3.5	12
121	Complexity Emerges from Lattice Overlapping: Implications for Nanopatterning. Small, 2008, 4, 1329-1331.	10.0	12
122	A nanomotor involves a metastable, left-handed DNA duplex. Organic and Biomolecular Chemistry, 2014, 12, 2543.	2.8	11
123	Kinetically Interlocking Multipleâ€Units Polymerization of DNA Double Crossover and Its Application in Hydrogel Formation. Macromolecular Rapid Communications, 2021, 42, e2100182.	3.9	11
124	Reversible Switching of pRNA Activity on the DNA Packaging Motor of Bacteriophage phi29. Journal of the American Chemical Society, 2008, 130, 17684-17687.	13.7	10
125	An Organic Semiconductor Organized into 3D DNA Arrays by "Bottomâ€up―Rational Design. Angewandte Chemie, 2017, 129, 6545-6548.	2.0	10
126	Universal pHâ€Responsive and Metalâ€Ionâ€Free Selfâ€Assembly of DNA Nanostructures. Angewandte Chemie, 2018, 130, 7008-7011.	2.0	10

#	Article	IF	CITATIONS
127	A Case Study of the Likes and Dislikes of DNA and RNA in Selfâ€Assembly. Angewandte Chemie - International Edition, 2015, 54, 15118-15121.	13.8	9
128	Selfâ€Assembly of Wireframe DNA Nanostructures from Junction Motifs. Angewandte Chemie, 2019, 131, 12251-12255.	2.0	9
129	Mechanistic Understanding of Surface Migration Dynamics with DNA Walkers. Journal of Physical Chemistry B, 2021, 125, 507-517.	2.6	9
130	Artificial, Parallel, Left-Handed DNA Helices. Journal of the American Chemical Society, 2012, 134, 20273-20275.	13.7	8
131	Postâ€Assembly Stabilization of Rationally Designed DNA Crystals. Angewandte Chemie, 2015, 127, 10074-10077.	2.0	8
132	Supramolecular Wireframe <scp>DNA</scp> Polyhedra: Assembly and Applications. Chinese Journal of Chemistry, 2017, 35, 801-810.	4.9	8
133	DNA Nanotechnology. BioTechniques, 2004, 37, 517-519.	1.8	7
134	Effects of Structural Flexibility on the Kinetics of DNA Y-Junction Assembly and Gelation. Langmuir, 2016, 32, 12862-12868.	3.5	7
135	5′-Phosphorylation Strengthens Sticky-End Cohesions. Journal of the American Chemical Society, 2021, 143, 14987-14991.	13.7	7
136	DNA cohesion through bubble–bubble recognition. Chemical Communications, 2012, 48, 12216.	4.1	6
137	Singleâ€Particle Cryoâ€EM and 3D Reconstruction of Hybrid Nanoparticles with Electronâ€Dense Components. Small, 2015, 11, 5157-5163.	10.0	6
138	Long conducting polymer nanonecklaces with a †beads-on-a-string' morphology: DNA nanotube-template synthesis and electrical properties. Nanoscale, 2016, 8, 10026-10029.	5.6	6
139	Can strand displacement take place in DNA triplexes?. Organic and Biomolecular Chemistry, 2018, 16, 372-375.	2.8	6
140	Rational Design of pHâ€Responsive DNA Motifs with General Sequence Compatibility. Angewandte Chemie, 2019, 131, 16557-16562.	2.0	6
141	Assembly of a DNA Origami Chinese Knot by Only 15% of the Staple Strands. ChemBioChem, 2020, 21, 2132-2136.	2.6	6
142	Kinetic DNA Self-Assembly: Simultaneously Co-folding Complementary DNA Strands into Identical Nanostructures. Journal of the American Chemical Society, 2021, 143, 20363-20367.	13.7	6
143	DNA gets a little cagey. Nature Nanotechnology, 2008, 3, 75-76.	31.5	5
144	Bacteria as factories. Nature Nanotechnology, 2008, 3, 707-708.	31.5	5

#	Article	IF	CITATIONS
145	Assembly of Barcodeâ€like Nucleic Acid Nanostructures. Small, 2014, 10, 3923-3926.	10.0	5
146	Modulating Selfâ€Assembly of DNA Crystals with Rationally Designed Agents. Angewandte Chemie, 2018, 130, 16767-16770.	2.0	5
147	Engineering the Nanoscaled Morphologies of Linear DNA Homopolymers. Macromolecular Rapid Communications, 2021, 42, e2100217.	3.9	5
148	Self-assembly of DNA double multi-arm junctions (DMaJs). RSC Advances, 2016, 6, 76355-76359.	3.6	4
149	Time lapse microscopy of temperature control during self-assembly of 3D DNA crystals. Journal of Crystal Growth, 2017, 476, 1-5.	1.5	4
150	DNA networks as templates for bottom-up assembly of metal nanowires. , 0, , .		3
151	Boosted Productivity in Singleâ€Tileâ€Based DNA Polyhedra Assembly by Simple Cation Replacement. ChemBioChem, 0, , .	2.6	3
152	Inhibition of DNA nanotube-conjugated mTOR siRNA on the growth of pulmonary arterial smooth muscle cells. Data in Brief, 2015, 5, 28-34.	1.0	2
153	Kissing loop-mediated fabrication of RNA nanoparticles and their potential as cellular and <i>in vivo</i> siRNA delivery platforms. Biomaterials Science, 2021, 9, 8148-8152.	5.4	2
154	Regulating Enzyme Activities in a Multiple-Enzyme Complex. ChemBioChem, 2005, 6, 999-1002.	2.6	1
155	Experiments in structural DNA nanotechnology: arrays and devices. , 2005, 5592, 71.		1
156	DNA Nanotubes: Self-Assembly of DNA Nanotubes with Defined Diameters and Lengths (Small 5/2014). Small, 2014, 10, 854-854.	10.0	1
157	Designed 3D DNA Crystals. Methods in Molecular Biology, 2017, 1500, 3-10.	0.9	1
158	Increasing the Solubility of a Hydrophobic Molecule with Thymine-like Face by DNA via Supramolecular Interaction. Chemical Research in Chinese Universities, 2020, 36, 281-284.	2.6	1
159	A conformational study of the 10–23 DNAzyme <i>via</i> programmed DNA self-assembly. Chemical Communications, 2022, 58, 6188-6191.	4.1	1
160	Cover Picture: Molecular Lithography with DNA Nanostructures (Angew. Chem. Int. Ed. 31/2004). Angewandte Chemie - International Edition, 2004, 43, 3983-3983.	13.8	0
161	Drugging the undruggable molecules by a DNA nanorobot. Science China Chemistry, 2018, 61, 763-764.	8.2	0
162	A DNA Nanodevice for Cancer Vaccination. Chemical Research in Chinese Universities, 2020, 36, 1147-1148.	2.6	0

#	Article	IF	CITATIONS
163	Regulating the Kinetics of DNA Attachment: Construction of Defined Clusters with High DNA Density and Strong Plasmonic Coupling. ChemNanoMat, 2021, 7, 811-814.	2.8	ο