Peter J Clarke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12048481/publications.pdf

Version: 2024-02-01

147801 189892 2,618 61 31 50 h-index citations g-index papers 62 62 62 2427 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A synthesis of postfire recovery traits of woody plants in Australian ecosystems. Science of the Total Environment, 2015, 534, 31-42.	8.0	151
2	Longâ€term changes in semiâ€arid vegetation: Invasion of an exotic perennial grass has larger effects than rainfall variability. Journal of Vegetation Science, 2005, 16, 237-248.	2.2	141
3	Dispersal potential and early growth in 14 tropical mangroves: do early life history traits correlate with patterns of adult distribution?. Journal of Ecology, 2001, 89, 648-659.	4.0	133
4	Dispersal of grey mangrove (Avicennia marina) propagules in southeastern Australia. Aquatic Botany, 1993, 45, 195-204.	1.6	119
5	Costs and benefits of relative bark thickness in relation to fire damage: a savanna/forest contrast. Journal of Ecology, 2013, 101, 517-524.	4.0	117
6	Germination and dormancy of grassy woodland and forest species: effects of smoke, heat, darkness and cold. Australian Journal of Botany, 2000, 48, 687.	0.6	108
7	Landscape patterns of woody plant response to crown fire: disturbance and productivity influence sprouting ability. Journal of Ecology, 2005, 93, 544-555.	4.0	96
8	Habitat islands in fire-prone vegetation: do landscape features influence community composition?. Journal of Biogeography, 2002, 29, 677-684.	3.0	82
9	The effects of seed predators on the recruitment of mangroves. Journal of Ecology, 2002, 90, 728-736.	4.0	75
10	Vegetation, terrain and fire history shape the impact of extreme weather on fire severity and ecosystem response. Journal of Vegetation Science, 2014, 25, 1033-1044.	2.2	71
11	Fire-related cues break seed dormancy of six legumes of tropical eucalypt savannas in north-eastern Australia. Austral Ecology, 2003, 28, 507-514.	1.5	68
12	Germinable soil seed banks in a tropical savanna: seasonal dynamics and effects of fire Austral Ecology, 2005, 30, 79-90.	1.5	67
13	Post-fire response of shrubs in the tablelands of eastern Australia: do existing models explain habitat differences?. Australian Journal of Botany, 2002, 50, 53.	0.6	62
14	Ecology of plant resprouting: populations to community responses in fire-prone ecosystems. Plant Ecology, 2011, 212, 1937-1943.	1.6	61
15	Resprouting responses of Acacia shrubs in the Western Desert of Australia - fire severity, interval and season influence survival. International Journal of Wildland Fire, 2007, 16, 317.	2.4	60
16	An assessment of some improved techniques for estimating the abundance (frequency) of sedentary organisms. Plant Ecology, 1995, 120, 131-145.	1.2	54
17	Effects of experimental canopy gaps on mangrove recruitment: lack of habitat partitioning may explain stand dominance. Journal of Ecology, 2004, 92, 203-213.	4.0	54
18	Composition of grazed and cleared temperate grassy woodlands in eastern Australia: patterns in space and inferences in time. Journal of Vegetation Science, 2003, 14, 5-14.	2.2	48

#	Article	IF	Citations
19	Experiments on tree and shrub establishment in temperate grassy woodlands: Seedling survival. Austral Ecology, 2002, 27, 606-615.	1.5	47
20	Do Forest Gaps Influence the Population Structure and Species Composition of Mangrove Stands in Northern Australia?1. Biotropica, 2000, 32, 642.	1.6	44
21	Woody-grass ratios in a grassy arid system are limited by multi-causal interactions of abiotic constraint, competition and fire. Oecologia, 2010, 162, 719-732.	2.0	44
22	Fire regime (recency, interval and season) changes the composition of spinifex (Triodia spp.)-dominated desert dunes. Australian Journal of Botany, 2007, 55, 709.	0.6	42
23	Fire, aridity and seed banks. What does seed bank composition reveal about community processes in fireâ€prone desert?. Journal of Vegetation Science, 2009, 20, 663-674.	2.2	41
24	Soil temperature and depth of legume germination during early and late dry season fires in a tropical eucalypt savanna of north-eastern Australia. Austral Ecology, 2004, 29, 258-263.	1.5	39
25	Emergence and survival of herbaceous seedlings in temperate grassy woodlands: Recruitment limitations and regeneration niche. Austral Ecology, 2004, 29, 320-331.	1.5	39
26	Variegated desert vegetation: Covariation of edaphic and fire variables provides a framework for understanding mulgaâ€spinifex coexistence. Austral Ecology, 2008, 33, 848-862.	1.5	39
27	Tradeâ€offs in resource allocation that favour resprouting affect the competitive ability of woody seedlings in grassy communities. Journal of Ecology, 2009, 97, 1374-1382.	4.0	38
28	Habitat insularity and fire response traits: evidence from a sclerophyll archipelago. Oecologia, 2002, 132, 582-591.	2.0	37
29	ARE TRADE-OFFS IN PLANT RESPROUTING MANIFESTED IN COMMUNITY SEED BANKS. Ecology, 2008, 89, 1850-1858.	3.2	34
30	Experiments on the mechanism of tree and shrub establishment in temperate grassy woodlands: Seedling emergence. Austral Ecology, 2001, 26, 400-412.	1.5	33
31	How do drought and fire influence the patterns of resprouting in Australian deserts?. Plant Ecology, 2011, 212, 2095-2110.	1.6	31
32	Using a rainforest-flame forest mosaic to test the hypothesis that leaf and litter fuel flammability is under natural selection. Oecologia, 2014, 176, 1123-1133.	2.0	30
33	Bark thickness does not explain the different susceptibility of Australian and New Zealand temperate rain forests to anthropogenic fire. Journal of Biogeography, 2014, 41, 1467-1477.	3.0	29
34	Perennial grassland dynamics on fertile plains: Is coexistence mediated by disturbance?. Austral Ecology, 2008, 33, 128-139.	1.5	28
35	Fire intensity, serotiny and seed release in 19 woody species: evidence for risk spreading among wind-dispersed and resprouting syndromes. Australian Journal of Botany, 2010, 58, 629.	0.6	28
36	Sphagnum Peatlands of Kosciuszko National Park in Relation to Altitude, Time and Disturbance. Australian Journal of Botany, 1999, 47, 519.	0.6	27

#	Article	IF	Citations
37	The population dynamics of the mangrove Avicennia marina; demographic synthesis and predictive modelling. Hydrobiologia, 1995, 295, 83-88.	2.0	25
38	Responses of tree species to a severe fire indicate major structural change to Eucalyptus–Callitris forests. Plant Ecology, 2016, 217, 617-629.	1.6	25
39	Seed dynamics of resprouting shrubs in grassy woodlands: Seed rain, predators and seed loss constrain recruitment potential. Austral Ecology, 2006, 31, 1016-1026.	1.5	22
40	A new approach and case study for estimating extent and rates of habitat loss for ecological communities. Biological Conservation, 2009, 142, 1469-1479.	4.1	21
41	Fire severity and nutrient availability do not constrain resprouting in forest shrubs. Plant Ecology, 2011, 212, 1967-1978.	1.6	20
42	Testing the Shifting Persistence Niche Concept: Plant Resprouting along Gradients of Disturbance. American Naturalist, 2015, 185, 747-755.	2.1	20
43	Burnt to blazes: landscape fires, resilience and habitat interaction in frequently burnt coastal heath. Australian Journal of Botany, 2007, 55, 91.	0.6	19
44	Seasonality and facilitation drive tree establishment in a semi-arid floodplain savanna. Oecologia, 2014, 175, 261-271.	2.0	19
45	Postâ€grazing and postâ€fire vegetation dynamics: longâ€term changes in mountain bogs reveal community resilience. Journal of Vegetation Science, 2015, 26, 278-290.	2.2	19
46	The population dynamics of the mangrove Avicennia marina; demographic synthesis and predictive modelling., 1995,, 83-88.		17
47	Seed traits and seed bank longevity of wet sclerophyll forest shrubs. Australian Journal of Botany, 2012, 60, 96.	0.6	11
48	Are fire resprouters more carbon limited than non-resprouters? Effects of elevated CO2 on biomass, storage and allocation of woody species. Plant Ecology, 2016, 217, 763-771.	1.6	11
49	Plant coexistence in coastal heaths: Between- and within-habitat effects of competition, disturbance and predation in the post-fire environment. Austral Ecology, 1996, 21, 55-63.	1.5	10
50	What drives plant biodiversity in the clay floodplain grasslands of NSW?. Rangeland Journal, 2009, 31, 329.	0.9	10
51	Fire, soil fertility and delayed seed release: a community analysis of the degree of serotiny. Evolutionary Ecology, 2013, 27, 429-443.	1.2	10
52	Dense regeneration of floodplain Eucalyptus coolabah: invasive scrub or passive restoration of an endangered woodland community?. Rangeland Journal, 2012, 34, 219.	0.9	10
53	Habitat Segregation by Serotinous Shrubs in Heaths: Post-fire Emergence and Seedling Survival. Australian Journal of Botany, 1997, 45, 31.	0.6	9
54	Plant coexistence in coastal heaths: Habitat segregation in the post-fire environment. Austral Ecology, 1996, 21, 47-54.	1.5	8

PETER J CLARKE

#	Article	IF	Citations
55	Measuring fire severity: Are canopy, understorey and below-ground measures coupled in sclerophyll forest fires?. Plant Ecology, 2016, 217, 607-615.	1.6	8
56	Plant trait - environmental linkages among contrasting landscapes and climate regimes in temperate eucalypt woodlands. Australian Journal of Botany, 2008, 56, 422.	0.6	8
57	A burning issue: community stability and alternative stable states in relation to fire. , 2013, , 63-74.		6
58	Regulation of seedling recruitment and survival in diverse ecotonal temperate forest understories. Plant Ecology, 2016, 217, 801-816.	1.6	6
59	Germination biologies and seedbank dynamics of Acacia shrubs in the Western Desert: implications for fire season impacts on recruitment. Australian Journal of Botany, 2018, 66, 278.	0.6	6
60	Appraising widespread resprouting but variable levels of postfire seeding in Australian ecosystems: the effect of phylogeny, fire regime and productivity. Australian Journal of Botany, 2022, 70, 114-130.	0.6	5
61	Fire regime, soil fertility and growth form interact to shape fire and growth traits in two co-occurring Banksia species. Evolutionary Ecology, 2016, 30, 35-45.	1.2	4