
Eleuterio Lombardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12046811/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mesenchymal Stromal Cell Derived Membrane Particles Are Internalized by Macrophages and Endothelial Cells Through Receptor-Mediated Endocytosis and Phagocytosis. Frontiers in Immunology, 2021, 12, 651109.	2.2	9
2	Membrane Particles Derived From Adipose Tissue Mesenchymal Stromal Cells Improve Endothelial Cell Barrier Integrity. Frontiers in Immunology, 2021, 12, 650522.	2.2	8
3	A phase Ib/IIa, randomised, double-blind, multicentre trial to assess the safety and efficacy of expanded Cx611 allogeneic adipose-derived stem cells (eASCs) for the treatment of patients with community-acquired bacterial pneumonia admitted to the intensive care unit. BMC Pulmonary Medicine. 2020. 20. 309.	0.8	10
4	Human adipose mesenchymal stem cells modulate myeloid cells toward an anti-inflammatory and reparative phenotype: role of IL-6 and PGE2. Stem Cell Research and Therapy, 2020, 11, 462.	2.4	31
5	Mesenchymal Stromal Cells Anno 2019: Dawn of the Therapeutic Era? Concise Review. Stem Cells Translational Medicine, 2019, 8, 1126-1134.	1.6	114
6	Role of tissue factor in the procoagulant and antibacterial effects of human adipose-derived mesenchymal stem cells during pneumosepsis in mice. Stem Cell Research and Therapy, 2019, 10, 286.	2.4	16
7	Dissecting Allo-Sensitization After Local Administration of Human Allogeneic Adipose Mesenchymal Stem Cells in Perianal Fistulas of Crohn's Disease Patients. Frontiers in Immunology, 2019, 10, 1244.	2.2	29
8	Human Adipose-Derived Mesenchymal Stem Cells Modify Lung Immunity and Improve Antibacterial Defense in Pneumosepsis Caused by <i>Klebsiella pneumoniae</i> . Stem Cells Translational Medicine, 2019, 8, 785-796.	1.6	30
9	Extracellular Vesicles Released by Allogeneic Human Cardiac Stem/Progenitor Cells as Part of Their Therapeutic Benefit. Stem Cells Translational Medicine, 2019, 8, 911-924.	1.6	12
10	Endoscopic submucosal injection of adipose-derived mesenchymal stem cells ameliorates TNBS-induced colitis in rats and prevents stenosis. Stem Cell Research and Therapy, 2018, 9, 95.	2.4	13
11	Human cardiac stem cells inhibit lymphocyte proliferation through paracrine mechanisms that correlate with indoleamine 2,3-dioxygenase induction and activity. Stem Cell Research and Therapy, 2018, 9, 290.	2.4	10
12	Intravenous Infusion of Human Adipose Mesenchymal Stem Cells Modifies the Host Response to Lipopolysaccharide in Humans: A Randomized, Single-Blind, Parallel Group, Placebo Controlled Trial. Stem Cells, 2018, 36, 1778-1788.	1.4	70
13	Comparative Analysis between the In Vivo Biodistribution and Therapeutic Efficacy of Adipose-Derived Mesenchymal Stromal Cells Administered Intraperitoneally in Experimental Colitis. International Journal of Molecular Sciences, 2018, 19, 1853.	1.8	11
14	Safety and Efficacy of Intracoronary Infusion of Allogeneic Human Cardiac Stem Cells in Patients With ST-Segment Elevation Myocardial Infarction and Left Ventricular Dysfunction. Circulation Research, 2018, 123, 579-589.	2.0	64
15	Identification of Potential Plasma microRNA Stratification Biomarkers for Response to Allogeneic Adipose-Derived Mesenchymal Stem Cells in Rheumatoid Arthritis. Stem Cells Translational Medicine, 2017, 6, 1202-1206.	1.6	25
16	Intralymphatic Administration of Adipose Mesenchymal Stem Cells Reduces the Severity of Collagen-Induced Experimental Arthritis. Frontiers in Immunology, 2017, 8, 462.	2.2	27
17	Biodistribution and Efficacy of Human Adipose-Derived Mesenchymal Stem Cells Following Intranodal Administration in Experimental Colitis. Frontiers in Immunology, 2017, 8, 638.	2.2	18
18	Human Cardiac-Derived Stem/Progenitor Cells Fine-Tune Monocyte-Derived Descendants Activities toward Cardiac Repair. Frontiers in Immunology, 2017, 8, 1413.	2.2	12

Eleuterio Lombardo

#	Article	IF	CITATIONS
19	Adiposeâ€derived mesenchymal stromal cells modulate experimental autoimmune arthritis by inducing an early regulatory innate cell signature. Immunity, Inflammation and Disease, 2016, 4, 213-224.	1.3	24
20	Human Adipose-Derived Mesenchymal Stem Cells Modulate Experimental Autoimmune Arthritis by Modifying Early Adaptive T Cell Responses. Stem Cells, 2015, 33, 3493-3503.	1.4	65
21	Survival and Biodistribution of Xenogenic Adipose Mesenchymal Stem Cells Is Not Affected by the Degree of Inflammation in Arthritis. PLoS ONE, 2015, 10, e0114962.	1.1	73
22	T Lymphocyte Prestimulation Impairs in a Time-Dependent Manner the Capacity of Adipose Mesenchymal Stem Cells to Inhibit Proliferation: Role of Interferon Î ³ , Poly I:C, and Tryptophan Metabolism in Restoring Adipose Mesenchymal Stem Cell Inhibitory Effect. Stem Cells and Development, 2015, 24, 2158-2170.	1.1	22
23	Mesenchymal stem cells as a therapeutic tool to treat sepsis. World Journal of Stem Cells, 2015, 7, 368.	1.3	89
24	Tryptophan concentration is the main mediator of the capacity of adipose mesenchymal stromal cells to inhibit T-lymphocyte proliferation in vitro. Cytotherapy, 2014, 16, 1679-1691.	0.3	30
25	Human adipose tissue–derived mesenchymal stromal cells promote B-cell motility and chemoattraction. Cytotherapy, 2014, 16, 1692-1699.	0.3	9
26	Adipose Mesenchymal Stromal Cell Function Is Not Affected by Methotrexate and Azathioprine. BioResearch Open Access, 2013, 2, 431-439.	2.6	10
27	Toll-Like Receptors as Modulators of Mesenchymal Stem Cells. Frontiers in Immunology, 2012, 3, 182.	2.2	150
28	Human Adipose-Derived Stem Cells Impair Natural Killer Cell Function and Exhibit Low Susceptibility to Natural Killer-Mediated Lysis. Stem Cells and Development, 2012, 21, 1333-1343.	1.1	90
29	APRIL and BAFF Proteins Increase Proliferation of Human Adipose-Derived Stem Cells Through Activation of Erk1/2 MAP Kinase. Tissue Engineering - Part A, 2012, 18, 852-859.	1.6	23
30	Mesenchymal stem cells as therapeutic agents of inflammatory and autoimmune diseases. Current Opinion in Biotechnology, 2012, 23, 978-983.	3.3	48
31	Modulation of Adult Mesenchymal Stem Cells Activity by Toll-Like Receptors: Implications on Therapeutic Potential. Mediators of Inflammation, 2010, 2010, 1-9.	1.4	155
32	Requirement of IFN-γ–Mediated Indoleamine 2,3-Dioxygenase Expression in the Modulation of Lymphocyte Proliferation by Human Adipose–Derived Stem Cells. Tissue Engineering - Part A, 2009, 15, 2795-2806.	1.6	263
33	Toll-like Receptor–Mediated Signaling in Human Adipose-Derived Stem Cells: Implications for Immunogenicity and Immunosuppressive Potential. Tissue Engineering - Part A, 2009, 15, 1579-1589.	1.6	133
34	TLR4-Mediated Survival of Macrophages Is MyD88 Dependent and Requires TNF-α Autocrine Signalling. Journal of Immunology, 2007, 178, 3731-3739.	0.4	103
35	Identification and Molecular Characterization of the RNA Polymerase-Binding Motif of Infectious Bursal Disease Virus Inner Capsid Protein VP3. Journal of Virology, 2003, 77, 2459-2468.	1.5	42
36	Complementary Roles of Multiple Nuclear Targeting Signals in the Capsid Proteins of the Parvovirus Minute Virus of Mice during Assembly and Onset of Infection. Journal of Virology, 2002, 76, 7049-7059.	1.5	100

#	Article	IF	CITATIONS
37	C Terminus of Infectious Bursal Disease Virus Major Capsid Protein VP2 Is Involved in Definition of the T Number for Capsid Assembly. Journal of Virology, 2001, 75, 10815-10828.	1.5	97
38	VP5, the Nonstructural Polypeptide of Infectious Bursal Disease Virus, Accumulates within the Host Plasma Membrane and Induces Cell Lysis. Virology, 2000, 277, 345-357.	1.1	115
39	A Beta-Stranded Motif Drives Capsid Protein Oligomers of the Parvovirus Minute Virus of Mice into the Nucleus for Viral Assembly. Journal of Virology, 2000, 74, 3804-3814.	1.5	91
40	VP1, the Putative RNA-Dependent RNA Polymerase of Infectious Bursal Disease Virus, Forms Complexes with the Capsid Protein VP3, Leading to Efficient Encapsidation into Virus-Like Particles. Journal of Virology, 1999, 73, 6973-6983.	1.5	111