
Claude Chevrot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12046803/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Active Thermal Control of Satellites with Electroactive Materials. , 2022, , 221-254.		1
2	Thermal regulation of satellites using adaptive polymeric materials. Solar Energy Materials and Solar Cells, 2019, 200, 110035.	3.0	13
3	Investigations of ionic liquids on the infrared electroreflective properties of poly(3,4-ethylenedioxythiophene). Solar Energy Materials and Solar Cells, 2018, 177, 23-31.	3.0	17
4	A comprehensive study of infrared reflectivity of poly(3,4-ethylenedioxythiophene) model layers with different morphologies and conductivities. Solar Energy Materials and Solar Cells, 2015, 143, 141-151.	3.0	34
5	Conducting IPNs and Ionic Liquids: Applications to Electroactive Polymer Devices. , 2015, , 297-321.		1
6	Electro-active Interpenetrating Polymer Networks actuators and strain sensors: Fabrication, position control and sensing properties. Sensors and Actuators B: Chemical, 2014, 193, 82-88.	4.0	52
7	Soft and flexible Interpenetrating Polymer Networks hosting electroreflective poly(3,4-ethylenedioxythiophene). Solar Energy Materials and Solar Cells, 2014, 127, 33-42.	3.0	17
8	Demonstrating kHz Frequency Actuation for Conducting Polymer Microactuators. Advanced Functional Materials, 2014, 24, 4851-4859.	7.8	96
9	Influence of the poly(ethylene oxide)/polybutadiene IPN morphology on the ionic conductivity of ionic liquid. European Polymer Journal, 2013, 49, 2670-2679.	2.6	11
10	Robust solid polymer electrolyte for conducting IPN actuators. Smart Materials and Structures, 2013, 22, 104005.	1.8	79
11	Patterning process and actuation in open air of micro-beam actuator based on conducting IPNs. Proceedings of SPIE, 2012, , .	0.8	4
12	Symmetrical electrochromic device from poly(3,4-(2,2-dimethylpropylenedioxy)thiophene)-based semi-interpenetrating polymer network. Synthetic Metals, 2012, 162, 1903-1911.	2.1	19
13	Electropolymerization of 3,4-ethylenedioxythiophene within an insulating nitrile butadiene rubber network: Application to electroreflective surfaces and devices. Solar Energy Materials and Solar Cells, 2012, 99, 109-115.	3.0	18
14	Micro-beam actuator based on conducting interpenetrating polymer networks: From patterning process to actuation in open air. , 2011, , .		0
15	Flexible Solid Polymer Electrolytes Based on Nitrile Butadiene Rubber/Poly(ethylene oxide) Interpenetrating Polymer Networks Containing Either LiTFSI or EMITFSI. Macromolecules, 2011, 44, 9683-9691.	2.2	88
16	Actuation and Sensing properties of Electroactive Polymer Whiskers. Procedia Computer Science, 2011, 7, S4-S7.	1.2	11
17	Conducting IPN actuators for biomimetic vision system. Proceedings of SPIE, 2011, , .	0.8	6
18	Poly(3,4â€ethylenedioxythiophene)â€containing semiâ€interpenetrating polymer networks: a versatile concept for the design of optical or mechanical electroactive devices. Polymer International, 2010, 59, 313-320.	1.6	38

CLAUDE CHEVROT

#	Article	IF	CITATIONS
19	New Prospects in the Conception of IR Electro-Tunable Devices: The Use of Conducting Semi-Interpenetrating Polymer Network Architecture. Chemistry of Materials, 2010, 22, 4539-4547.	3.2	25
20	Conducting polymer artificial muscle fibres: toward an open air linear actuation. Chemical Communications, 2010, 46, 2910.	2.2	50
21	Ionic IPNs as novel candidates for highly conductive solid polymer electrolytes. Journal of Polymer Science Part A, 2009, 47, 4245-4266.	2.5	56
22	Synthesis, polymerization and conducting properties of an ionic liquid-type anionic monomer. Tetrahedron Letters, 2009, 50, 128-131.	0.7	35
23	Self-supported semi-interpenetrating polymer networks for new design of electrochromic devices. Electrochimica Acta, 2008, 53, 4336-4343.	2.6	58
24	Thermal ageing of poly(ethylene oxide)/poly(3,4-ethylenedioxythiophene) semi-IPNs. European Polymer Journal, 2008, 44, 3864-3870.	2.6	21
25	Poly(ethylene oxide)/polybutadiene based IPNs synthesis and characterization. Polymer, 2007, 48, 696-703.	1.8	50
26	Polybutadiene/poly(ethylene oxide) based IPNs, Part II: Mechanical modelling and LiClO4 loading as tools for IPN morphology investigation. Polymer, 2007, 48, 7476-7483.	1.8	21
27	Copolymers based on fluorene dyads mixed to 3,4-ethylenedioxythiophene units: Optical properties of random versus regular structures. Synthetic Metals, 2006, 156, 898-906.	2.1	9
28	Conducting IPN actuators: From polymer chemistry to actuator with linear actuation. Synthetic Metals, 2006, 156, 1299-1304.	2.1	62
29	Interpenetrating Polymer Networks from Polymeric Imidazolium-type Ionic Liquid and polybutadiene. Polymer Bulletin, 2006, 57, 473-480.	1.7	22
30	Long-Life Air Working Semi-IPN/Ionic Liquid: New Precursor of Artificial Muscles. Molecular Crystals and Liquid Crystals, 2006, 448, 95/[697]-102/[704].	0.4	15
31	Synthesis and characterization of conducting interpenetrating polymer networks for new actuators. Polymer, 2005, 46, 7771-7778.	1.8	84
32	Long-life air working conducting semi-IPN/ionic liquid based actuator. Synthetic Metals, 2004, 142, 287-291.	2.1	154
33	New organic materials for light emitting devices based on dihexylfluorene-co-ethylenedioxythiophene copolymers exhibiting improved hole-injecting properties. Synthetic Metals, 2002, 131, 31-40.	2.1	30
34	Interfacial polymerization of a 3,4-ethylenedioxythiophene derivative using Langmuir–Blodgett technique. Spectroscopic and electrochemical characterizations. Thin Solid Films, 2002, 411, 280-288.	0.8	25
35	Synthesis and electrochemical properties of mixed ionic and electronic modified polycarbazole. Electrochimica Acta, 2002, 47, 2927-2936.	2.6	75
36	Fully undoped and soluble oligo(3,4-ethylenedioxythiophene)s: spectroscopic study and electrochemical characterization. Journal of Materials Chemistry, 2001, 11, 1378-1382.	6.7	162

CLAUDE CHEVROT

#	Article	IF	CITATIONS
37	Optical and electrochemical properties of soluble N-hexylcarbazole-co-3,4-ethylenedioxythiophene copolymers. Synthetic Metals, 2001, 122, 351-358.	2.1	30
38	Electrosynthesis and oxidation of new oligoazomethines containing N-ethylcarbazole groups. Synthetic Metals, 2001, 118, 157-166.	2.1	13
39	Electrochemical behaviour of 3, 4-ethylenedioxythiophene functionalized by a sulphonate group. Application to the preparation of poly(3, 4-ethylenedioxythiophene) having permanent cation-exchange properties. Journal of Electroanalytical Chemistry, 1998, 443, 217-226.	1.9	101
40	Electropolymerization of 3,4-ethylenedioxythiophene and 3,4-ethylenedioxythiophene methanol in the presence of dodecylbenzenesulfonate. Synthetic Metals, 1998, 93, 33-41.	2.1	187
41	Electrosynthesis and study of phenylene-carbazolylene copolymers. Synthetic Metals, 1994, 63, 89-99.	2.1	21
42	Investigation of the electrocatalysed step polymerization of soluble poly(N-alkyl-3,6-carbazolylene)s. Polymer, 1993, 34, 3911-3916.	1.8	9
43	Investigation on the electrocatalyzed step polymerization of soluble electroactive poly(N-alkyl-3,6-carbazolylenes). Synthetic Metals, 1993, 55, 1656-1661.	2.1	25
44	Electrosynthesis of poly(N-ethyl-3,6-carbazolediyl) catalyzed by a Ni(0)-based complex. Die Makromolekulare Chemie, 1989, 190, 1361-1368.	1.1	53
45	Electrosynthesis of all-electroactive copolymers based on phenylene and carbozolylene units. Synthetic Metals, 1989, 33, 57-64.	2.1	6
46	Preparation of Poly(1,4-phenylene) by Nickel(0) complex catalyzed electropolymerization. Die Makromolekulare Chemie Rapid Communications, 1983, 4, 455-457.	1.1	106
47	Synthesis and Characterization of IPNs for Electrochemical Actuators. Advances in Science and Technology, 0, , .	0.2	9
48	Conducting IPN Fibers: A New Design for Linear Actuation in Open Air. Advances in Science and Technology, 0, , .	0.2	6
49	PEDOT Based Conducting IPN Actuators: Effects of Electrolyte on Actuation. Advances in Science and Technology, 0, , .	0.2	5