Daniel Bitran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12044979/publications.pdf Version: 2024-02-01

DANIEL RITDAN

#	Article	IF	CITATIONS
1	Termination of pseudopregnancy in the rat alters the response to progesterone, chlordiazepoxide, and MK-801 in the elevated plus-maze. Psychopharmacology, 2005, 180, 447-454.	3.1	6
2	Termination of pseudopregnancy in the rat produces an anxiogenic-like response that is associated with an increase in benzodiazepine receptor binding density and a decrease in GABA-stimulated chloride influx in the hippocampus. Brain Research Bulletin, 2005, 64, 511-518.	3.0	24
3	The preclinical biology of a new potent and selective progestin: trimegestone. Steroids, 2003, 68, 915-920.	1.8	57
4	FGIN-1-X. Frontiers in Neuroscience, 2003, , .	0.0	0
5	Memory-enhancing effects of DHEAS in aged mice on a win-shift water escape task. Physiology and Behavior, 2001, 72, 521-525.	2.1	41
6	Activation of peripheral mitochondrial benzodiazepine receptors in the hippocampus stimulates allopregnanolone synthesis and produces anxiolytic-like effects in the rat. Psychopharmacology, 2000, 151, 64-71.	3.1	122
7	The neurosteroid pregnanolone prevents the anxiogenic-like effect of inescapable shock in the rat. Psychopharmacology, 2000, 151, 31-37.	3.1	31
8	Anxiolytic effects of the neuroactive steroid pregnanolone (31±-OH-51²-pregnan-20-one) after microinjection in the dorsal hippocampus and lateral septum. Brain Research, 1999, 850, 217-224.	2.2	123
9	Ovarian steroids and stress produce changes in peripheral benzodiazepine receptor density. European Journal of Pharmacology, 1998, 361, 235-242.	3.5	24
10	Corticosterone Is Permissive to the Anxiolytic Effect That Results From the Blockade of Hippocampal Mineralocorticoid Receptors. Pharmacology Biochemistry and Behavior, 1998, 60, 879-887.	2.9	87
11	Withdrawal from 3α-OH-5α-Pregnan-20-One Using a Pseudopregnancy Model Alters the Kinetics of Hippocampal GABA _A -Gated Current and Increases the GABA _A Receptor α4 Subunit in Association with Increased Anxiety. Journal of Neuroscience, 1998, 18, 5275-5284.	3.6	334
12	Chronic anabolic-androgenic steroid treatment affects brain gabaa receptor-gated chloride ion transport. Life Sciences, 1996, 58, 573-583.	4.3	45
13	Anxiolytic Effect of Progesterone is Mediated by the Neurosteroid Allopregnanolone at Brain GABA _A Receptors. Journal of Neuroendocrinology, 1995, 7, 171-177.	2.6	363
14	Anxiolytic effect of progesterone is associated with increases in cortical alloprenanolone and GABAA receptor function. Pharmacology Biochemistry and Behavior, 1993, 45, 423-428.	2.9	241
15	Treatment with an Anabolic-Androgenic Steroid Affects Anxiety-Related Behavior and Alters the Sensitivity of Cortical GABAA Receptors in the Rat. Hormones and Behavior, 1993, 27, 568-583.	2.1	168
16	Male rat copulation following 6-OHDA lesions of the medial preoptic area: resistance to repeated administration and rapid behavioral recovery. Brain Research, 1992, 580, 164-171.	2.2	26
17	Anxiolytic effects of 3α-hydroxy-5α[β]-pregnan-20-one: endogenous metabolites of progesterone that are active at the GABAA receptor. Brain Research, 1991, 561, 157-161.	2.2	422
18	Ovarian endocrine status modulates the anxiolytic potency of diazepam and the efficacy of !g-aminobutyric acid-benzodiazepine receptor-mediated chloride ion transport Behavioral Neuroscience, 1991, 105, 653-662.	1.2	108

DANIEL BITRAN

#	Article	IF	CITATIONS
19	Spinal block reveals roles for brain and spinal cord in the mediation of reflexive penile erections in rats. Brain Research, 1990, 528, 99-108.	2.2	47
20	Quinelorane (LY163502), a D2 dopamine receptor agonist, facilitatesseminal emission, but inhibits penile erection in the rat. Pharmacology Biochemistry and Behavior, 1989, 34, 453-458.	2.9	48
21	Penile desensitization does not affect postcopulatory genital autogrooming in rats: Evidence for central motor patterning. Physiology and Behavior, 1989, 45, 1001-1006.	2.1	10
22	Inhibition of sexual reflexes by lumbosacral injection of a GABAB agonist in the male rat. Pharmacology Biochemistry and Behavior, 1988, 31, 657-666.	2.9	61
23	Brain localization of cholinergic influence on male sex behavior in rats: Agonists. Pharmacology Biochemistry and Behavior, 1988, 31, 169-174.	2.9	34
24	Brain localization of cholinergic influence on male sex behavior in rats: Antagonists. Pharmacology Biochemistry and Behavior, 1988, 31, 175-178.	2.9	25
25	Microinjection of cis-flupenthixol, a dopamine antagonist, into the medial preoptic area impairs sexual behavior of male rats. Brain Research, 1988, 443, 70-76.	2.2	92
26	Relation of autogrooming to sexual behavior in male rats. Physiology and Behavior, 1988, 43, 637-643.	2.1	35
27	Regulation of male rat copulatory behavior by preoptic incertohypothalamic dopamine neurons. Brain Research Bulletin, 1988, 20, 323-331.	3.0	66
28	Pharmacological analysis of male rat sexual behavior. Neuroscience and Biobehavioral Reviews, 1987, 11, 365-389.	6.1	416
29	Dopaminergic control of male sex behavior in rats: Effects of an intracerebrally-infused agonist. Brain Research, 1986, 370, 73-81	2.2	200