Linda Jen-Jacobson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12044868/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Kinked DNA in crystalline complex with EcoRI endonuclease. Nature, 1984, 309, 327-331.	27.8	328
2	Structural and Thermodynamic Strategies for Site-Specific DNA Binding Proteins. Structure, 2000, 8, 1015-1023.	3.3	245
3	Protein—DNA recognition complexes: Conservation of structure and binding energy in the transition state. Biopolymers, 1997, 44, 153-180.	2.4	177
4	Specific binding by EcoRV endonuclease to its DNA recognition site GATATC. Journal of Molecular Biology, 1997, 269, 82-101.	4.2	106
5	The enfolding arms of EcoRI endonuclease: Role in DNA binding and cleavage. Cell, 1986, 45, 619-629.	28.9	81
6	The energetics of the interaction of BamHI endonuclease with its recognition site GGATCC11Edited by R. Ebright. Journal of Molecular Biology, 2001, 307, 619-636.	4.2	79
7	ESR spectroscopy identifies inhibitory Cu ²⁺ sites in a DNA-modifying enzyme to reveal determinants of catalytic specificity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E993-1000.	7.1	70
8	Thermodynamic Parameters of Specific and Nonspecific Protein-DNA Binding. Supramolecular Chemistry, 2000, 12, 143-160.	1.2	63
9	Single-molecule sequence detection via microfluidic planar extensional flow at a stagnation point. Lab on A Chip, 2010, 10, 1543.	6.0	61
10	Mechanisms of Coupling between DNA Recognition Specificity and Catalysis in EcoRI Endonuclease. Structure, 2004, 12, 1775-1788.	3.3	49
11	Chiral Phosphorothioates as Probes of Protein Interactions with Individual DNA Phosphoryl Oxygens:Â Essential Interactions ofEcoRI Endonuclease with the Phosphate at pGAATTCâ€. Biochemistry, 1996, 35, 8846-8854.	2.5	40
12	Recognition of the Pro-mutagenic Base Uracil by Family B DNA Polymerases from Archaea. Journal of Molecular Biology, 2004, 337, 621-634.	4.2	38
13	[14] Structural-perturbation approaches to thermodynamics of site-specific protein—DNA interactions. Methods in Enzymology, 1995, 259, 305-344.	1.0	35
14	Electron Spin Resonance Shows Common Structural Features for Different Classes of <i>Eco</i> Rl–DNA Complexes. Angewandte Chemie - International Edition, 2008, 47, 10192-10194.	13.8	31
15	Simulating the Dynamics and Orientations of Spin-Labeled Side Chains in a Protein–DNA Complex. Journal of Physical Chemistry B, 2012, 116, 4024-4033.	2.6	30
16	Sensitive Cu ²⁺ –Cu ²⁺ Distance Measurements in a Protein–DNA Complex by Double-Quantum Coherence ESR. Journal of Physical Chemistry B, 2013, 117, 6227-6230.	2.6	28
17	Specific Labeling of Threonine Methyl Groups for NMR Studies of Protein–Nucleic Acid Complexes. Biochemistry, 2011, 50, 10189-10191.	2.5	25
18	Fluorescent Marker for Direct Detection of Specific dsDNA Sequences. Analytical Chemistry, 2009, 81, 10049-10054.	6.5	24

LINDA JEN-JACOBSON

#	Article	IF	CITATIONS
19	Thermodynamic and Kinetic Basis for the Relaxed DNA Sequence Specificity of "Promiscuous―Mutant EcoRI Endonucleases. Journal of Molecular Biology, 2005, 348, 307-324.	4.2	20
20	N-Termini of EcoRI Restriction Endonuclease Dimer Are in Close Proximity on the Protein Surface. Biochemistry, 1998, 37, 15457-15465.	2.5	19
21	Solution Conformation ofEcoRI Restriction Endonuclease Changes upon Binding of Cognate DNA and Mg2+Cofactorâ€. Biochemistry, 2001, 40, 683-692.	2.5	19
22	A trimeric DNA polymerase complex increases the native replication processivity. Nucleic Acids Research, 2009, 37, 7194-7205.	14.5	19
23	The Energetic Contribution of Induced Electrostatic Asymmetry to DNA Bending by a Site-Specific Protein. Journal of Molecular Biology, 2011, 406, 285-312.	4.2	18
24	Formation of DNAâ^'Protein Cross-Links Between γ-Hydroxypropanodeoxyguanosine and EcoRI. Chemical Research in Toxicology, 2008, 21, 1733-1738.	3.3	17
25	Differential Temperature-Dependent Multimeric Assemblies of Replication and Repair Polymerases on DNA Increase Processivity. Biochemistry, 2012, 51, 7367-7382.	2.5	17
26	Structural and Thermodynamic Basis for Enhanced DNA Binding by a Promiscuous Mutant EcoRI Endonuclease. Structure, 2007, 15, 1368-1382.	3.3	14
27	Two-Fold Symmetry of Crystalline DNA- <i>ECO</i> RI Endonuclease Recognition Complexes. Journal of Biomolecular Structure and Dynamics, 1984, 1, 1149-1160.	3.5	13
28	Chapter 2. Role of Water and Effects of Small Ions in Site-specific Protein-DNA Interactions. RSC Biomolecular Sciences, 2008, , 13-46.	0.4	10
29	Thermodynamic and Structural Basis for Relaxation of Specificity in Protein–DNA Recognition. Journal of Molecular Biology, 2014, 426, 84-104.	4.2	10
30	Assay of Restriction Endonucleases Using Oligonucleotides. , 2001, 148, 465-490.		9
31	Insights into copper coordination in the EcoRl–DNA complex by ESR spectroscopy. Molecular Physics, 2014, 112, 3173-3182.	1.7	8
32	Divide and conquer is always best: sensitivity of methyl correlation experiments. Journal of Biomolecular NMR, 2013, 56, 331-335.	2.8	7
33	Restriction Cascade Exponential Amplification (RCEA) assay with an attomolar detection limit: a novel, highly specific, isothermal alternative to qPCR. Scientific Reports, 2015, 5, 7737.	3.3	6
34	Metal Ion Binding at the Catalytic Site Induces Widely Distributed Changes in a Sequence Specific Protein–DNA Complex. Biochemistry, 2016, 55, 6115-6132.	2.5	6
35	The relationship between translational initiation and messenger RNA inactivation in down-shifted Escherichia coli. Archives of Biochemistry and Biophysics, 1985, 241, 118-131.	3.0	5
36	Control of protein synthesis in Escherichia coli: Lack of correlation with changes in intracellular pools of ATP, GTP, and ppGpp. Archives of Biochemistry and Biophysics, 1980, 203, 691-696.	3.0	4

#	Article	IF	CITATIONS
37	Posttranscriptional Control of Protein Synthesis during Substrate Adaptation. , 1982, , 191-204.		0