Manoj Datta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1204457/publications.pdf

Version: 2024-02-01

516710 434195 1,627 74 16 31 h-index citations g-index papers 75 75 75 1566 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A Novel Hybrid AC/DC Microgrid Architecture With a Central Energy Storage System. IEEE Transactions on Power Delivery, 2022, 37, 2060-2070.	4.3	9
2	Adaptive Virtual Impedance Controller for Parallel and Radial Microgrids With Varying X/R Ratios. IEEE Transactions on Sustainable Energy, 2022, 13, 830-843.	8.8	15
3	Optimal Micro-PMU Placement in Distribution Networks Considering Usable Zero-Injection Phase Strings. IEEE Transactions on Smart Grid, 2022, 13, 3662-3675.	9.0	8
4	Effects of Household Battery Systems on LV Residential Feeder Voltage Management. IEEE Transactions on Power Delivery, 2022, 37, 5325-5336.	4.3	6
5	Selection of Appropriate Dispatch Strategies for Effective Planning and Operation of a Microgrid. Energies, 2021, 14, 7217.	3.1	28
6	On the Optimal Placement of Micro-PMU in Distribution Networks Considering Phase Strings. , 2021, , .		1
7	Stability and Control Aspects of Microgrid Architectures–A Comprehensive Review. IEEE Access, 2020, 8, 144730-144766.	4.2	172
8	An Adaptive Power Oscillation Damping Controller for a Hybrid AC/DC Microgrid. IEEE Access, 2020, 8, 69482-69495.	4.2	17
9	Optimal Reactive Power Dispatch Considering Reactive Power Support from Renewable Energy Generators. , 2019, , .		4
10	Impact of Multiple Motor Loads on Dynamic Performance and Stability of Microgrids., 2019,,.		5
11	Analysis and mitigation of lowâ€frequency oscillations in hybrid AC/DC microgrids with dynamic loads. IET Generation, Transmission and Distribution, 2019, 13, 1477-1488.	2.5	22
12	Influence of Feeder Characteristics on Hybrid AC/DC Microgrids Stability. , 2019, , .		3
13	Investigation of Low-Frequency Oscillations in VSD Driven Induction Motors in Microgrids. , 2019, , .		O
14	Optimal Sizing of an Islanded Hybrid Microgrid Considering Alternative Dispatch Strategies., 2019,,.		7
15	Analyzing the Effect of X/R ratio on Dynamic Performance of Microgrids. , 2019, , .		9
16	Load Frequency Control Design for Two Area Interconnected Power System with DFIG Based Wind Turbine. International Journal of Emerging Electric Power Systems, 2019, 20, .	0.8	1
17	On the Applicability of Kuramoto Model to Microgrid Technologies. , 2019, , .		1
18	Role of fault rideâ€through strategies for power grids with 100% power electronicâ€interfaced distributed renewable energy resources. Wiley Interdisciplinary Reviews: Energy and Environment, 2018, 7, e292.	4.1	23

#	Article	IF	Citations
19	Software defined neighborhood area network for smart grid applications. Future Generation Computer Systems, 2018, 79, 500-513.	7.5	15
20	Load Frequency Control Using Demand Response and Storage Battery by Considering Renewable Energy Sources. Energies, 2018, 11, 3412.	3.1	4
21	Fuzzy-based Coordinated Control to Reduce DC-link Overvoltage of a PMSG based Wind Energy Systems during Grid Faults. , 2018, , .		1
22	Coordinated control technique of PMSG based wind energy conversion system during repetitive grid fault. , 2018, , .		2
23	Reactive Power Management in Renewable Rich Power Grids: A Review of Grid-Codes, Renewable Generators, Support Devices, Control Strategies and Optimization Algorithms. IEEE Access, 2018, 6, 41458-41489.	4.2	177
24	Control strategy of PMSG based wind energy conversion system under strong wind conditions. Energy for Sustainable Development, 2018, 45, 211-218.	4.5	42
25	Hybrid Genetic Algorithm Fuzzy-Based Control Schemes for Small Power System with High-Penetration Wind Farms. Applied Sciences (Switzerland), 2018, 8, 373.	2.5	24
26	Fault-ride-through performance improvement of a PMSG based wind energy systems via coordinated control of STATCOM., 2018,,.		3
27	Load Frequency Control for Renewable Energy Sources for Isolated Power System. , 2018, , .		1
28	A coordinated control of grid connected PMSG based wind energy conversion system under grid faults. , 2017, , .		9
29	Frequency Control Method using Automated Demand Response for Isolated Power System with Renewable Energy Sources. International Journal of Emerging Electric Power Systems, 2017, 18, .	0.8	3
30	Small signal stability analysis of a hybrid AC/DC microgrid with static and dynamic loads. , 2017, , .		10
31	Investigation of transient stability of a power network with solar-PV generation: Impact of loading level & amp; control strategy., 2017,,.		7
32	A method to reduce DC-link overvoltage of PMSG based WECS during LVRT. , 2016, , .		7
33	System frequency control using emergency demand response in power systems with large-scale Renewable Energy Sources. , 2016, , .		6
34	Comparison of synchronous and stationary frame pi based flux weakening controls for DC-link overvoltage minimisation of WECS under grid fault. , 2016 , , .		4
35	A novel software defined wireless sensor network based grid to vehicle load management system. , 2016, , .		7
36	Comparisons of PI and PR current controllers based flux weakening to limit DC-link capacitor overvoltage in PMSG based wind energy system. , $2016, , .$		3

#	Article	IF	Citations
37	Transient stability of a hybrid micro-grid with multivariable droop and virtual synchronous generator. , $2016, , .$		1
38	Suppression of power system voltage and frequency fluctuations by decentralized controllable loads. Journal of Renewable and Sustainable Energy, 2016, 8, .	2.0	3
39	Uninterruptible smart house equipped with a single-phase dq-transformation system. Journal of Renewable and Sustainable Energy, 2016, 8, 025101.	2.0	3
40	A survey of smart grid architectures, applications, benefits and standardization. Journal of Network and Computer Applications, 2016, 76, 23-36.	9.1	84
41	Real-time pricing based frequency control and smoothing of PV and WTG output power variations in islanded micro-grid. , 2015 , , .		1
42	A novel WiMAX ranging scheme for periodic M2M applications in smart grid., 2015,,.		2
43	Frequency control using real-time pricing for isolated power systems. , 2015, , .		5
44	A novel Zigbee based pilot protection scheme for smart distribution grid. , 2014, , .		5
45	Fuzzy logic based frequency control by V2G aggregators. , 2014, , .		7
46	Grid Stabilization with Decentralized Controllable Loads using Fuzzy Control and Droop Characteristics. International Journal of Emerging Electric Power Systems, 2014, 15, 357-365.	0.8	12
47	Fuzzy Control of Distributed PV Inverters/Energy Storage Systems/Electric Vehicles for Frequency Regulation in a Large Power System. IEEE Transactions on Smart Grid, 2013, 4, 479-488.	9.0	191
48	Notice of Violation of IEEE Publication Principles: LFC by coordinated virtual inertia mimicking and PEVs in power utility with MW-class distributed PV generation. , 2012, , .		17
49	Frequency control improvement in a PV-diesel hybrid power system with a virtual inertia controller., 2012,,.		10
50	A Frequency-Control Approach by Photovoltaic Generator in a PV–Diesel Hybrid Power System. IEEE Transactions on Energy Conversion, 2011, 26, 559-571.	5.2	230
51	Fuzzy control of MW-class PV generation to reduce frequency and tie-line power fluctuations in three control area power system. , $2011, \dots$		4
52	Photovoltaic Output Power Fluctuations Smoothing by Selecting Optimal Capacity of Battery for a Photovoltaic-Diesel Hybrid System. Electric Power Components and Systems, 2011, 39, 621-644.	1.8	39
53	A fuzzy based method for leveling output power fluctuations of photovoltaic-diesel hybrid power system. Renewable Energy, 2011, 36, 1693-1703.	8.9	39
54	Control of MW-class PV generation to reduce frequency and tie-line power fluctuations in three control area power system. , 2011, , .		11

#	Article	lF	CITATIONS
55	A frequency control method for isolated photovoltaic-diesel hybrid power system without smoothing renewable power variations. International Journal of Power Electronics, 2010, 2, 389.	0.2	1
56	Photovoltaic output power fluctuations smoothing methods for single and multiple PV generators. Current Applied Physics, 2010, 10, S265-S270.	2.4	24
57	Minimal-order observer-based coordinated control method for isolated power utility connected multiple photovoltaic systems to reduce frequency deviations. IET Renewable Power Generation, 2010, 4, 153.	3.1	9
58	Frequency Control of Photovoltaic–Diesel Hybrid System Connecting to Isolated Power Utility by Using Load Estimator and Energy Storage System. IEEJ Transactions on Electrical and Electronic Engineering, 2010, 5, 677-687.	1.4	4
59	A frequency control method for isolated photovoltaic-diesel hybrid power system with use of full renewable energy. , 2009, , .		10
60	A Control Method for Small Utility Connected Large PV System to Reduce Frequency Deviation Using a Minimal-Order Observer. IEEE Transactions on Energy Conversion, 2009, 24, 520-528.	5.2	27
61	A Fuzzy Control Based Coordinated Method for Isolated Power Utility Connected Clustered Photovoltaic Systems to Provide Frequency Control. , 2009, , .		2
62	A Coordinated Control Method for Leveling PV Output Power Fluctuations of PV–Diesel Hybrid Systems Connected to Isolated Power Utility. IEEE Transactions on Energy Conversion, 2009, 24, 153-162.	5.2	183
63	A Fuzzy Based Coordinated Control Method for Isolated Power Utility Connected Multiple PV Systems to Reduce Frequency Deviations. IEEJ Transactions on Power and Energy, 2009, 129, 1081-1090.	0.2	2
64	A fuzzy based control method for isolated power utility connected PV-diesel hybrid system to reduce frequency deviation. , 2008, , .		6
65	A minimal-order observer based coordinated control method for isolated power utility connected multiple PV systems to reduce frequency deviations. , 2008, , .		2
66	A High Performance Decoupling Control of Induction Motor with Eficient Flux Estimator., 2007,,.		0
67	A coordinated control method for leveling output power fluctuations of multiple PV systems. , 2007,		2
68	A new method for smoothing output power fluctuations of PV system connected to small power utility. , 2007, , .		8
69	Genetic Algorithm Based Fast Speed Response Induction Motor Drive without Speed Encoder. , 2007, , .		9
70	Output Power Coordination Control for Wind Farm in Small Power System., 2007,,.		9
71	Robust Input-Output Decoupling Control for Induction Motors with Improved Stator Flux Estimator. , 2006, , .		0
72	A New Scheme For Field-Orientation Control Of Induction Motor Drive With Adaptive Neural Flux Estimator. , 0 , , .		3

#	Article	lF	CITATIONS
73	Genetic Algorithm Based Fast Speed Response Induction Motor Drive With ANN Flux Estimator. , 0, , .		3
74	Fast Speed Response Field-Orientation Control Of Induction Motor Drive With Adaptive Neural Integrator. , 0, , .		3