Muhammad Zaeem Noman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12043910/publications.pdf

Version: 2024-02-01

42 papers 5,633 citations

32 h-index 289141 40 g-index

43 all docs

43 docs citations

times ranked

43

8456 citing authors

#	Article	IF	CITATIONS
1	Targeting Cytoprotective Autophagy to Enhance Anticancer Therapies. Frontiers in Oncology, 2021, 11, 626309.	1.3	22
2	Epithelial to Mesenchymal Transition Regulates Surface PD-L1 via CMTM6 and CMTM7 Induction in Breast Cancer. Cancers, 2021, 13, 1165.	1.7	24
3	Targeting HIF-1 alpha transcriptional activity drives cytotoxic immune effector cells into melanoma and improves combination immunotherapy. Oncogene, 2021, 40, 4725-4735.	2.6	70
4	The emerging impact of autophagy on the antitumor immune response. , 2020, , 109-117.		0
5	Firing up the cold tumors by targeting Vps34. Oncolmmunology, 2020, 9, 1809936.	2.1	24
6	Inhibition of Vps34 reprograms cold into hot inflamed tumors and improves anti–PD-1/PD-L1 immunotherapy. Science Advances, 2020, 6, eaax7881.	4.7	164
7	Improving Cancer Immunotherapy by Targeting the Hypoxic Tumor Microenvironment: New Opportunities and Challenges. Cells, 2019, 8, 1083.	1.8	153
8	Impact of hypoxic tumor microenvironment and tumor cell plasticity on the expression of immune checkpoints. Cancer Letters, 2019, 458, 13-20.	3.2	83
9	The Distinct Roles of CXCR3 Variants and Their Ligands in the Tumor Microenvironment. Cells, 2019, 8, 613.	1.8	60
10	Driving Natural Killer cells toward the melanoma tumor battlefield: Autophagy as a valuable therapeutic target. Oncolmmunology, 2018, 7, e1452583.	2.1	18
11	CD47 is a direct target of SNAI1 and ZEB1 and its blockade activates the phagocytosis of breast cancer cells undergoing EMT. Oncolmmunology, 2018, 7, e1345415.	2.1	63
12	Cutting Edge: NANOG Activates Autophagy under Hypoxic Stress by Binding to BNIP3L Promoter. Journal of Immunology, 2017, 198, 1423-1428.	0.4	36
13	The immune checkpoint ligand PD-L1 is upregulated in EMT-activated human breast cancer cells by a mechanism involving ZEB-1 and miR-200. Oncolmmunology, 2017, 6, e1263412.	2.1	193
14	Acquisition of tumor cell phenotypic diversity along the EMT spectrum under hypoxic pressure: Consequences on susceptibility to cell-mediated cytotoxicity. Oncolmmunology, 2017, 6, e1271858.	2.1	61
15	Targeting autophagy inhibits melanoma growth by enhancing NK cells infiltration in a CCL5-dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9271-E9279.	3.3	181
16	The multifaceted role of autophagy in tumor evasion from immune surveillance. Oncotarget, 2016, 7, 17591-17607.	0.8	53
17	Intrinsic and Tumor Microenvironment-Induced Metabolism Adaptations of T Cells and Impact on Their Differentiation and Function. Frontiers in Immunology, 2016, 7, 114.	2.2	28
18	Hijacker of the Antitumor Immune Response: Autophagy Is Showing Its Worst Facet. Frontiers in Oncology, 2016, 6, 246.	1.3	22

#	Article	IF	Citations
19	Hypoxic tumor-derived microvesicles negatively regulate NK cell function by a mechanism involving TGF- \hat{l}^2 and miR23a transfer. Oncolmmunology, 2016, 5, e1062968.	2.1	247
20	Renal Cell Carcinoma Programmed Death-ligand 1, a New Direct Target of Hypoxia-inducible Factor-2 Alpha, is Regulated by von Hippel–Lindau Gene Mutation Status. European Urology, 2016, 70, 623-632.	0.9	115
21	miR-210 and hypoxic microvesicles: Two critical components of hypoxia involved in the regulation of killer cells function. Cancer Letters, 2016, 380, 257-262.	3.2	33
22	Critical Role of Tumor Microenvironment in Shaping NK Cell Functions: Implication of Hypoxic Stress. Frontiers in Immunology, 2015, 6, 482.	2.2	103
23	Hypoxia: a key player in antitumor immune response. A Review in the Theme: Cellular Responses to Hypoxia. American Journal of Physiology - Cell Physiology, 2015, 309, C569-C579.	2.1	316
24	Tumor-Promoting Effects of Myeloid-Derived Suppressor Cells Are Potentiated by Hypoxia-Induced Expression of miR-210. Cancer Research, 2015, 75, 3771-3787.	0.4	112
25	The Selective Degradation of Synaptic Connexin 43 Protein by Hypoxia-induced Autophagy Impairs Natural Killer Cell-mediated Tumor Cell Killing. Journal of Biological Chemistry, 2015, 290, 23670-23679.	1.6	81
26	Hypoxia: A Formidable Saboteur of the Anti-tumor Response. Resistance To Targeted Anti-cancer Therapeutics, 2015, , 115-142.	0.1	0
27	Emerging Role of Hypoxia-Induced Autophagy in Cancer Immunotherapy. , 2014, , 247-262.		1
28	Autophagic degradation of GZMB/granzyme B. Autophagy, 2014, 10, 173-175.	4.3	73
29	ITPR1 Protects Renal Cancer Cells against Natural Killer Cells by Inducing Autophagy. Cancer Research, 2014, 74, 6820-6832.	0.4	97
30	Targeting hypoxia at the forefront of anticancer immune responses. Oncolmmunology, 2014, 3, e954463.	2.1	56
31	PD-L1 is a novel direct target of HIF- $1\hat{l}_{\pm}$, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. Journal of Experimental Medicine, 2014, 211, 781-790.	4.2	1,601
32	Epithelial-to-Mesenchymal Transition and Autophagy Induction in Breast Carcinoma Promote Escape from T-cell–Mediated Lysis. Cancer Research, 2013, 73, 2418-2427.	0.4	255
33	Cutting Edge: Hypoxia-Induced Nanog Favors the Intratumoral Infiltration of Regulatory T Cells and Macrophages via Direct Regulation of TGF- \hat{l}^21 . Journal of Immunology, 2013, 191, 5802-5806.	0.4	97
34	Granzyme B degradation by autophagy decreases tumor cell susceptibility to natural killer-mediated lysis under hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17450-17455.	3.3	263
35	Hypoxia-induced autophagy. Autophagy, 2012, 8, 704-706.	4.3	56
36	Hypoxia-Inducible miR-210 Regulates the Susceptibility of Tumor Cells to Lysis by Cytotoxic T Cells. Cancer Research, 2012, 72, 4629-4641.	0.4	168

#	Article	IF	CITATIONS
37	Hypoxia Promotes Tumor Growth in Linking Angiogenesis to Immune Escape. Frontiers in Immunology, 2012, 3, 21.	2.2	148
38	Blocking Hypoxia-Induced Autophagy in Tumors Restores Cytotoxic T-Cell Activity and Promotes Regression. Cancer Research, 2011, 71, 5976-5986.	0.4	223
39	Microenvironmental Hypoxia Orchestrating the Cell Stroma Cross Talk, Tumor Progression and Antitumor Response. Critical Reviews in Immunology, 2011, 31, 357-377.	1.0	83
40	Cytotoxic T cells – Stroma interactions. Bulletin Du Cancer, 2011, 98, E19-E24.	0.6	9
41	Hypoxia-Dependent Inhibition of Tumor Cell Susceptibility to CTL-Mediated Lysis Involves NANOG Induction in Target Cells. Journal of Immunology, 2011, 187, 4031-4039.	0.4	57
42	The Cooperative Induction of Hypoxia-Inducible Factor- $1\hat{l}_{\pm}$ and STAT3 during Hypoxia Induced an Impairment of Tumor Susceptibility to CTL-Mediated Cell Lysis. Journal of Immunology, 2009, 182, 3510-3521.	0.4	175