
Julian Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12041454/publications.pdf Version: 2024-02-01

IIIIIAN SMITH

#	Article	IF	CITATIONS
1	Robust motion tracking control of piezo-driven flexure-based four-bar mechanism for micro/nano manipulation. Mechatronics, 2008, 18, 111-120.	3.3	124
2	Aspirin and Tranexamic Acid for Coronary Artery Surgery (ATACAS) Trial: Rationale and design. American Heart Journal, 2008, 155, 224-230.	2.7	67
3	Development and control of a two DOF linear–angular precision positioning stage. Mechatronics, 2015, 32, 34-43.	3.3	56
4	An Australian risk prediction model for 30-day mortality after isolated coronary artery bypass: The AusSCORE. Journal of Thoracic and Cardiovascular Surgery, 2009, 138, 904-910.	0.8	52
5	Effects of realistic force feedback in a robotic assisted minimally invasive surgery system. Minimally Invasive Therapy and Allied Technologies, 2014, 23, 127-135.	1.2	33
6	Design, analysis and experimental investigations of a high precision flexure-based microgripper for micro/nano manipulation. Mechatronics, 2020, 69, 102396.	3.3	33
7	Tranexamic acid in coronary artery surgery: One-year results of the Aspirin and Tranexamic Acid for Coronary Artery Surgery (ATACAS) trial. Journal of Thoracic and Cardiovascular Surgery, 2019, 157, 644-652.e9.	0.8	26
8	A Cellular Neural Network Methodology for Deformable Object Simulation. IEEE Transactions on Information Technology in Biomedicine, 2006, 10, 749-762.	3.2	23
9	A new ChainMail approach for real-time soft tissue simulation. Bioengineered, 2016, 7, 246-252.	3.2	20
10	Soft tissue deformation with reaction-diffusion process for surgery simulation. Journal of Visual Languages and Computing, 2012, 23, 1-12.	1.8	19
11	An autowave based methodology for deformable object simulation. CAD Computer Aided Design, 2006, 38, 740-754.	2.7	18
12	Soft tissue modelling through autowaves for surgery simulation. Medical and Biological Engineering and Computing, 2006, 44, 805-821.	2.8	15
13	Neural dynamics-based Poisson propagation for deformable modelling. Neural Computing and Applications, 2019, 31, 1091-1101.	5.6	14
14	An electromechanical based deformable model for soft tissue simulation. Artificial Intelligence in Medicine, 2009, 47, 275-288.	6.5	13
15	Soft tissue modelling with conical springs. Bio-Medical Materials and Engineering, 2015, 26, S207-S214.	0.6	13
16	Cellular neural network modelling of soft tissue dynamics for surgical simulation. Technology and Health Care, 2017, 25, 337-344.	1.2	10
17	Simulation of deformable models with the Poisson equation. Computer Methods in Biomechanics and Biomedical Engineering, 2006, 9, 289-304.	1.6	9
18	ChainMail based neural dynamics modeling of soft tissue deformation for surgical simulation. Technology and Health Care, 2017, 25, 231-239.	1.2	9

JULIAN SMITH

#	Article	IF	CITATIONS
19	Energy propagation modeling of nonlinear soft tissue deformation for surgical simulation. Simulation, 2018, 94, 3-10.	1.8	8
20	The Real-World Cost-Effectiveness of Coronary Artery Bypass Surgery Versus Stenting in High-Risk Patients: Propensity Score-Matched Analysis of a Single-Centre Experience. Applied Health Economics and Health Policy, 2018, 16, 661-674.	2.1	8
21	Surgical aortic valve replacement in Australia, 2002–2015: temporal changes in clinical practice, patient profiles and outcomes. ANZ Journal of Surgery, 2019, 89, 1061-1067.	0.7	8
22	Prediction of tissue thermal damage. Technology and Health Care, 2016, 24, S625-S629.	1.2	7
23	Local deformation for soft tissue simulation. Bioengineered, 2016, 7, 291-297.	3.2	7
24	Non-Fourier based thermal-mechanical tissue damage prediction for thermal ablation. Bioengineered, 2017, 8, 71-77.	3.2	7
25	Are professional footballers becoming lighter and more ectomorphic? Implications for talent identification and development. International Journal of Sports Science and Coaching, 2019, 14, 329-335.	1.4	7
26	Thermal–Mechanical-Based Soft Tissue Deformation for Surgery Simulation. Advanced Robotics, 2010, 24, 1719-1739.	1.8	5
27	GPU-ACCELERATED FINITE ELEMENT MODELING OF BIO-HEAT CONDUCTION FOR SIMULATION OF THERMAL ABLATION. Journal of Mechanics in Medicine and Biology, 2018, 18, 1840012.	0.7	5
28	TEMPERATURE-DEPENDENT THERMOMECHANICAL MODELING OF SOFT TISSUE DEFORMATION. Journal of Mechanics in Medicine and Biology, 2018, 18, 1840021.	0.7	5
29	Modeling of soft tissue thermal damage based on GPU acceleration. Computer Assisted Surgery, 2019, 24, 5-12.	1.3	5
30	Sensing and Modelling Mechanical Response in Large Deformation Indentation of Adherent Cell Using Atomic Force Microscopy. Sensors, 2020, 20, 1764.	3.8	5
31	A reaction-diffusion methodology for soft object simulation. , 2006, , .		4
32	Applying a framework to assess the impact of cardiovascular outcomes improvement research. Health Research Policy and Systems, 2021, 19, 67.	2.8	3
33	Impact of Discontinuation of Antiplatelet Therapy Prior to Isolated Valve and Combined Coronary Artery Bypass Graft and Valve Procedures on Short and Intermediate Term Outcomes. Heart Lung and Circulation, 2018, 27, 878-884.	0.4	2
34	Nonlinear Deformations of Soft Tissues for Surgery Simulation. , 2016, , 281-296.		1
35	Soft Tissue Characterisation Using a Force Feedback-Enabled Instrument for Robotic Assisted Minimally Invasive Surgery Systems. , 2014, , 473-484.		1
36	An optimal parameter estimation method for soft tissue characterization. , 2010, , .		0

#	Article	IF	CITATIONS
37	THE PRIMARY FELLOWSHIP EXAMINATION. Medical Journal of Australia, 1930, 2, 820-822.	1.7	0