Rabi Chhantyal-Pun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1204128/publications.pdf

Version: 2024-02-01

687363 677142 23 767 13 22 citations h-index g-index papers 23 23 23 651 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Investigation of the Production of Trifluoroacetic Acid from Two Halocarbons, HFC-134a and HFO-1234yf and Its Fates Using a Global Three-Dimensional Chemical Transport Model. ACS Earth and Space Chemistry, 2021, 5, 849-857.	2.7	19
2	Criegee intermediates: production, detection and reactivity. International Reviews in Physical Chemistry, 2020, 39, 385-424.	2.3	56
3	Impact of Criegee Intermediate Reactions with Peroxy Radicals on Tropospheric Organic Aerosol. ACS Earth and Space Chemistry, 2020, 4, 1743-1755.	2.7	16
4	Investigating the Atmospheric Sources and Sinks of Perfluorooctanoic Acid Using a Global Chemistry Transport Model. Atmosphere, 2020, 11, 407.	2.3	7
5	Direct Kinetic and Atmospheric Modeling Studies of Criegee Intermediate Reactions with Acetone. ACS Earth and Space Chemistry, 2019, 3, 2363-2371.	2.7	34
6	Experimental and computational studies of Criegee intermediate reactions with NH ₃ and CH ₃ NH ₂ . Physical Chemistry Chemical Physics, 2019, 21, 14042-14052.	2.8	46
7	Investigating the Tropospheric Chemistry of Acetic Acid Using the Global 3â€D Chemistry Transport Model, STOCHEMâ€CRI. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6267-6281.	3.3	19
8	Criegee Intermediate Reactions with Carboxylic Acids: A Potential Source of Secondary Organic Aerosol in the Atmosphere. ACS Earth and Space Chemistry, 2018, 2, 833-842.	2.7	102
9	Gas spectroscopy with integrated frequency monitoring through self-mixing in a terahertz quantum-cascade laser. Optics Letters, 2018, 43, 2225.	3.3	12
10	Temperatureâ€Dependence of the Rates of Reaction of Trifluoroacetic Acid with Criegee Intermediates. Angewandte Chemie, 2017, 129, 9172-9175.	2.0	5
11	Temperatureâ€Dependence of the Rates of Reaction of Trifluoroacetic Acid with Criegee Intermediates. Angewandte Chemie - International Edition, 2017, 56, 9044-9047.	13.8	62
12	Atmospheric chemistry processes: general discussion. Faraday Discussions, 2017, 200, 353-378.	3.2	0
13	Criegee Intermediate–Alcohol Reactions, A Potential Source of Functionalized Hydroperoxides in the Atmosphere. ACS Earth and Space Chemistry, 2017, 1, 664-672.	2.7	104
14	Direct Measurements of Unimolecular and Bimolecular Reaction Kinetics of the Criegee Intermediate (CH ₃) ₂ COO. Journal of Physical Chemistry A, 2017, 121, 4-15.	2.5	87
15	A kinetic study of the CH ₂ OO Criegee intermediate self-reaction, reaction with SO ₂ and unimolecular reaction using cavity ring-down spectroscopy. Physical Chemistry Chemical Physics, 2015, 17, 3617-3626.	2.8	115
16	Jet-Cooled Laser-Induced Fluorescence Spectroscopy of Isopropoxy Radical: Vibronic Analysis of $\langle i \rangle B f \langle i \rangle A f \langle i \rangle A f \langle i \rangle A f \langle i \rangle B$ and Systems. Journal of Physical Chemistry A, 2014, 118, 11852-11870.	2.5	15
17	Imaging and Scattering Studies of the Unimolecular Dissociation of the BrCH ₂ CH ₂ ONO Photolysis at 351 nm. Journal of Physical Chemistry A, 2014, 118, 404-416.	2.5	4
18	Laser induced fluorescence study of the - transition of FCH2CH2O. Chemical Physics Letters, 2013, 555, 64-71.	2.6	3

#	Article	IF	CITATIONS
19	Detection and Characterization of Products from Photodissociation of XCH $<$ sub $>$ 2 $<$ /sub $>$ CH $<$ sub $>$ 2 $<$ /sub $>$ ONO (X = F, Cl, Br, OH). Journal of Physical Chemistry A, 2012, 116, 12032-12040.	2.5	12
20	The AÌf-XÌf absorption of vinoxy radical revisited: Normal and Herzberg–Teller bands observed via cavity ringdown spectroscopy. Journal of Chemical Physics, 2010, 132, 114302.	3.0	8
21	Observation of the $\tilde{A}f\hat{a}^2X\hat{I}f$ Electronic Transitions of Cyclopentyl and Cyclohexyl Peroxy Radicals via Cavity Ringdown Spectroscopy. Journal of Physical Chemistry A, 2010, 114, 218-231.	2.5	13
22	Observation of the $\tilde{A}f\hat{a}^{2}Xf$ Electronic Transition of the \hat{I}^{2} -Hydroxyethylperoxy Radical. Journal of Physical Chemistry Letters, 2010, 1, 1846-1852.	4.6	16
23	Measurements of the Absolute Absorption Cross Sections of the $\langle i \rangle \tilde{A} / \langle i \rangle $	2.5	12