Qiu-Yun Xiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12039721/publications.pdf

Version: 2024-02-01

147566 3,441 74 31 h-index citations papers

56 g-index 78 78 78 2761 docs citations times ranked citing authors all docs

149479

#	Article	IF	CITATIONS
1	Assessing hybridization in natural populations of Penstemon (Scrophulariaceae) using hypervariable intersimple sequence repeat (ISSR) bands. Molecular Ecology, 1998, 7, 1107-1125.	2.0	329
2	Timing the Eastern Asian–Eastern North American Floristic Disjunction: Molecular Clock Corroborates Paleontological Estimates. Molecular Phylogenetics and Evolution, 2000, 15, 462-472.	1.2	232
3	Phylogenetic Analyses Identify 10 Classes of the Protein Disulfide Isomerase Family in Plants, Including Single-Domain Protein Disulfide Isomerase-Related Proteins. Plant Physiology, 2005, 137, 762-778.	2.3	198
4	The Eastern Asian and Eastern and Western North American Floristic Disjunction: Congruent Phylogenetic Patterns in Seven Diverse Genera. Molecular Phylogenetics and Evolution, 1998, 10, 178-190.	1.2	183
5	Phylogenetic relationships of Cornaceae and close relatives inferred from matK and rbcL sequences. American Journal of Botany, 1998, 85, 285-297.	0.8	131
6	REGIONAL DIFFERENCES IN RATES OF PLANT SPECIATION AND MOLECULAREVOLUTION: A COMPARISON BETWEEN EASTERN ASIA AND EASTERN NORTH AMERICA. Evolution; International Journal of Organic Evolution, 2004, 58, 2175-2184.	1.1	125
7	Phylogenetic Relationships of Cornus L. Sensu Lato and Putative Relatives Inferred from rbcL Sequence Data. Annals of the Missouri Botanical Garden, 1993, 80, 723.	1.3	121
8	Species level phylogeny of the genus <i>Cornus</i> (Cornaceae) based on molecular and morphological evidenceâ€"implications for taxonomy and Tertiary intercontinental migration. Taxon, 2006, 55, 9-30.	0.4	100
9	ORIGIN AND BIOGEOGRAPHY OF <i>AESCULUS</i> L. (HIPPOCASTANACEAE): A MOLECULAR PHYLOGENETIC PERSPECTIVE. Evolution; International Journal of Organic Evolution, 1998, 52, 988-997.	1.1	97
10	Adaptive and nonadaptive genome size evolution in Karst endemic flora of China. New Phytologist, 2014, 202, 1371-1381.	3. 5	91
11	Relationships within Cornales and circumscription of Cornaceae—matK and rbcL sequence data and effects of outgroups and long branches. Molecular Phylogenetics and Evolution, 2002, 24, 35-57.	1.2	81
12	Resolving and dating the phylogeny of Cornales – Effects of taxon sampling, data partitions, and fossil calibrations. Molecular Phylogenetics and Evolution, 2011, 59, 123-138.	1.2	81
13	Estimating ancestral distributions of lineages with uncertain sister groups: a statistical approach to Dispersal–Vicariance Analysis and a case using <i>Aesculus</i> L. (Sapindaceae) including fossils. Journal of Systematics and Evolution, 2009, 47, 349-368.	1.6	79
14	Phylogenetic analyses of Cornales based on 26S rRNA and combined 26S rDNAâ€MAT <i>K</i> à€RBC <i>L</i> sequence data. American Journal of Botany, 2003, 90, 1357-1372.	0.8	76
15	PHYLOGENY, BIOGEOGRAPHY, AND MOLECULAR DATING OF CORNELIAN CHERRIES (CORNUS,CORNACEAE): TRACKING TERTIARY PLANT MIGRATION. Evolution; International Journal of Organic Evolution, 2005, 59, 1685-1700.	1.1	71
16	Relationships and evolution of Hydrangeaceae based on <i>RBC</i> l sequence data. American Journal of Botany, 1995, 82, 504-514.	0.8	70
17	Molecular evidence for polyploid origins in Saxifraga (Saxifragaceae): the narrow arctic endemic S. svalbardensis and its widespread allies. American Journal of Botany, 1998, 85, 135-143.	0.8	70
18	Phylogenetic relationships and evolution in Chrysosplenium (Saxifragaceae) based on matK sequence data. American Journal of Botany, 2001, 88, 883-893.	0.8	64

#	Article	IF	CITATIONS
19	Phylogenetic relationships within Cornus (Cornaceae) based on 26S rDNA sequences. American Journal of Botany, 2001, 88, 1131-1138.	0.8	62
20	Inferring the biogeographic origins of interâ€continental disjunct endemics using a Bayesâ€DIVA approach. Journal of Systematics and Evolution, 2013, 51, 117-133.	1.6	62
21	Phylogeny, origin, and biogeographic history of <i>Aesculus</i> L. (Sapindales) – an update from combined analysis of DNA sequences, morphology, and fossils. Taxon, 2009, 58, 108-126.	0.4	52
22	Phylogenetic Relationships in Cornus Based on Chloroplast DNA Restriction Sites: Implications for Biogeography and Character Evolution. Systematic Botany, 1996, 21, 515.	0.2	50
23	Phylogeny of <i>Abies</i> (Pinaceae) inferred from nrITS sequence data. Taxon, 2009, 58, 141-152.	0.4	46
24	Origin and Biogeography of Aesculus L. (Hippocastanaceae): A Molecular Phylogenetic Perspective. Evolution; International Journal of Organic Evolution, 1998, 52, 988.	1.1	43
25	Ecological genomics of local adaptation in <i>Cornus florida</i> L. by genotyping by sequencing. Ecology and Evolution, 2017, 7, 441-465.	0.8	43
26	Phylogenomics of polyploid <i>Fothergilla</i> (Hamamelidaceae) by RADâ€tag based GBSâ€"insights into species origin and effects of software pipelines. Journal of Systematics and Evolution, 2015, 53, 432-447.	1.6	39
27	Resolving relationships and phylogeographic history of the Nyssa sylvatica complex using data from RAD-seq and species distribution modeling. Molecular Phylogenetics and Evolution, 2018, 126, 1-16.	1.2	39
28	Heterogeneous evolution of the Myc-like Anthocyanin regulatory gene and its phylogenetic utility in Cornus L. (Cornaceae). Molecular Phylogenetics and Evolution, 2004, 33, 580-594.	1.2	37
29	Plastid phylogenomics and biogeographic analysis support a trans-Tethyan origin and rapid early radiation of Cornales in the Mid-Cretaceous. Molecular Phylogenetics and Evolution, 2019, 140, 106601.	1.2	37
30	Comparative phylogeography of the Smilax hispida group (Smilacaceae) in eastern Asia and North America – Implications for allopatric speciation, causes of diversity disparity, and origins of temperate elements in Mexico. Molecular Phylogenetics and Evolution, 2013, 68, 300-311.	1.2	35
31	Rates of nucleotide substitution in Cornaceae (Cornales)—Pattern of variation and underlying causal factors. Molecular Phylogenetics and Evolution, 2008, 49, 327-342.	1.2	32
32	Phylogenyâ€based developmental analyses illuminate evolution of inflorescence architectures in dogwoods (<i>Cornus</i> s. l., Cornaceae). New Phytologist, 2011, 191, 850-869.	3.5	32
33	Relationships and evolution of Hydrangeaceae based on RBCl sequence data. , 1995, 82, 504.		32
34	Phylogenetic relationships in Abies (Pinaceae): evidence from PCR-RFLP of the nuclear ribosomal DNA internal transcribed spacer region. Botanical Journal of the Linnean Society, 2004, 145, 425-435.	0.8	31
35	A New Pipeline for Removing Paralogs in Target Enrichment Data. Systematic Biology, 2022, 71, 410-425.	2.7	28
36	Phylogeny and biogeography of Alangiaceae (Cornales) inferred from DNA sequences, morphology, and fossils. Molecular Phylogenetics and Evolution, 2009, 51, 201-214.	1.2	27

#	Article	IF	CITATIONS
37	Phylogenomic approaches to deciphering the tree of life. Journal of Systematics and Evolution, 2015, 53, 369-370.	1.6	25
38	Evolution of bract development and Bâ€class MADS box gene expression in petaloid bracts of <i>Cornus </i> s.Âl. (Cornaceae). New Phytologist, 2012, 196, 631-643.	3.5	24
39	Phylogenomics, co-evolution of ecological niche and morphology, and historical biogeography of buckeyes, horsechestnuts, and their relatives (Hippocastaneae, Sapindaceae) and the value of RAD-Seq for deep evolutionary inferences back to the Late Cretaceous. Molecular Phylogenetics and Evolution, 2020, 145, 106726.	1.2	24
40	Phylogenomics, biogeography, and evolution of morphology and ecological niche of the eastern Asian–eastern North American ⟨i⟩Nyssa⟨/i⟩ (Nyssaceae). Journal of Systematics and Evolution, 2020, 58, 571-603.	1.6	24
41	Molecular evolution of PISTILLATA-like genes in the dogwood genus Cornus (Cornaceae). Molecular Phylogenetics and Evolution, 2008, 47, 175-195.	1.2	22
42	Curtisia (Cornales) from the Eocene of Europe and its phytogeographical significance. Botanical Journal of the Linnean Society, 2007, 155, 127-134.	0.8	21
43	Phylogeny, biogeography, and molecular dating of cornelian cherries (Cornus, Cornaceae): tracking Tertiary plant migration. Evolution; International Journal of Organic Evolution, 2005, 59, 1685-700.	1.1	21
44	Phylogenetic Analyses in Cornus Substantiate Ancestry of Xylem Supercooling Freezing Behavior and Reveal Lineage of Desiccation Related Proteins. Plant Physiology, 2004, 135, 1654-1665.	2.3	20
45	Genetic structure and postâ€glacial expansion of <i>Cornus florida</i> L. (Cornaceae): integrative evidence from phylogeography, population demographic history, and species distribution modeling. Journal of Systematics and Evolution, 2016, 54, 136-151.	1.6	20
46	Evolution and developmental genetics of floral displayâ€"A review of progress. Journal of Systematics and Evolution, 2017, 55, 487-515.	1.6	20
47	Genetic analyses of the federally endangered Echinacea laevigata using amplified fragment length polymorphisms (AFLP)—Inferences in population genetic structure and mating system. Conservation Genetics, 2009, 10, 1-14.	0.8	19
48	Analysis of two TFL1 homologs of dogwood species (Cornus L.) indicates functional conservation in control of transition to flowering. Planta, 2016, 243, 1129-1141.	1.6	19
49	Alterations of Cor TFL 1 and Cor AP 1 expression correlate with major evolutionary shifts of inflorescence architecture in Cornus (Cornaceae) $\hat{a} \in \hat{a}$ a proposed model for variation of closed inflorescence forms. New Phytologist, 2017, 216, 519-535.	3.5	19
50	Discovering variation of secondary metabolite diversity and its relationship with disease resistance in <i>Cornus florida</i> L Ecology and Evolution, 2018, 8, 5619-5636.	0.8	19
51	Natural selection and repeated patterns of molecular evolution following allopatric divergence. ELife, 2019, 8, .	2.8	18
52	Shoot regeneration of dwarf dogwood (Cornus canadensis L.) and morphological characterization of the regenerated plants. Plant Cell, Tissue and Organ Culture, 2009, 97, 27-37.	1.2	17
53	Characterization of the sequence and expression pattern of LFY homologues from dogwood species (Cornus) with divergent inflorescence architectures. Annals of Botany, 2013, 112, 1629-1641.	1.4	16
54	REGIONAL DIFFERENCES IN RATES OF PLANT SPECIATION AND MOLECULAR EVOLUTION: A COMPARISON BETWEEN EASTERN ASIA AND EASTERN NORTH AMERICA. Evolution; International Journal of Organic Evolution, 2004, 58, 2175.	1.1	15

#	Article	IF	Citations
55	Phylogenomics, biogeography, and evolution of the blueâ€or whiteâ€fruited dogwoods (<i>Cornus</i>)—Insights into morphological and ecological niche divergence following intercontinental geographic isolation. Journal of Systematics and Evolution, 2020, 58, 604-645.	1.6	15
56	Recent vicariance and the origin of the rare, edaphically specialized Sandhills lily, <i>Lilium pyrophilum</i> (Liliaceae): evidence from phylogenetic and coalescent analyses. Molecular Ecology, 2011, 20, 2901-2915.	2.0	14
57	Evidence for range stasis during the latter Pleistocene for the Atlantic Coastal Plain endemic genus, Pyxidanthera Michaux. Molecular Ecology, 2010, 19, 4302-4314.	2.0	13
58	Population structure, landscape genomics, and genetic signatures of adaptation to exotic disease pressure in <i>Cornus florida</i> Lâ€"Insights from GWAS and GBS data. Journal of Systematics and Evolution, 2020, 58, 546-570.	1.6	13
59	Molecular phylogenetic analysis suggests paraphyly and early diversification of <i>Philadelphus</i> (<scp>H</scp> ydrangeaceae) in western North America: New insights into affinity with <i>Carpenteria</i> . Journal of Systematics and Evolution, 2013, 51, 545-563.	1.6	12
60	De novo Sequencing, Characterization, and Comparison of Inflorescence Transcriptomes of Cornus canadensis and C. florida (Cornaceae). PLoS ONE, 2013, 8, e82674.	1.1	12
61	Testing the monophyly of Aesculus L. and Billia Peyr., woody genera of tribe Hippocastaneae of the Sapindaceae. Molecular Phylogenetics and Evolution, 2016, 102, 145-151.	1.2	12
62	Evolutionary patterns in the antR-Cor gene in the dwarf dogwood complex (Cornus, Cornaceae). Genetica, 2007, 130, 19-34.	0.5	10
63	Intercontinental and intracontinental biogeographyâ€"patterns and methods. Journal of Systematics and Evolution, 2009, 47, 327-330.	1.6	9
64	Ancestral chloroplast polymorphism and historical secondary contact in a broad hybrid zone of <i>Aesculus </i>(Sapindaceae) . American Journal of Botany, 2006, 93, 377-388.	0.8	8
65	Phylogenomics and biogeography of <i>Torreya</i> (Taxaceae)â€"Integrating data from three organelle genomes, morphology, and fossils and a practical method for reducing missing data from RADâ€seq. Journal of Systematics and Evolution, 2022, 60, 1241-1262.	1.6	7
66	Genetic insights into the evolution of genera with the eastern Asia–eastern North America floristic disjunction: a transcriptomics analysis. American Journal of Botany, 2020, 107, 1736-1748.	0.8	6
67	PHYLOGENY, BIOGEOGRAPHY, AND MOLECULAR DATING OF CORNELIAN CHERRIES (CORNUS, CORNACEAE): TRACKING TERTIARY PLANT MIGRATION. Evolution; International Journal of Organic Evolution, 2005, 59, 1685.	1.1	5
68	Next Steps in Integrative Biology: Mapping Interactive Processes Across Levels of Biological Organization. Integrative and Comparative Biology, 2021, , .	0.9	5
69	TAXONOMY OF THE GONOLOBUS COMPLEX (APOCYNACEAE, ASCLEPIADOIDEAE) IN THE SOUTHEASTERN UNITED STATES: ISSR EVIDENCE AND PARSIMONY ANALYSIS. Harvard Papers in Botany, 2005, 10, 147-159.	0.1	3
70	Down regulation of APETALA 3 homolog resulted in defect of floral structure critical to explosive pollen release in Cornus canadensis. Journal of Systematics and Evolution, 2017, 55, 566-580.	1.6	2
71	Functional characterization of Terminal Flower1 homolog in Cornus canadensis by genetic transformation. Plant Cell Reports, 2019, 38, 333-343.	2.8	2
72	Evolution, development, and genetics of floral displayâ€"form, size, and arrangement. Journal of Systematics and Evolution, 2017, 55, 485-486.	1.6	1

#	#	Article	IF	CITATIONS
7	73	In memory of Professor Tang Yan heng: New perspectives in systematic and evolutionary biology. Journal of Systematics and Evolution, 2020, 58, 527-532.	1.6	O
7	74	In Memory of Professor Yan-Cheng Tang—A Brief Biography and Academic Contributions. Harvard Papers in Botany, 2020, 25, .	0.1	0