Raffaella Mancuso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1203942/publications.pdf

Version: 2024-02-01

127 papers

4,129 citations

36 h-index 57 g-index

137 all docs

137 docs citations

times ranked

137

3482 citing authors

#	Article	IF	CITATIONS
1	Oxidative Carbonylation as a Powerful Tool for the Direct Synthesis of Carbonylated Heterocycles. European Journal of Organic Chemistry, 2012, 2012, 6825-6839.	1.2	266
2	Efficient Synthesis of Ureas by Direct Palladium-Catalyzed Oxidative Carbonylation of Amines. Journal of Organic Chemistry, 2004, 69, 4741-4750.	1.7	211
3	Recent Advances in the Synthesis of Indanes and Indenes. Chemistry - A European Journal, 2016, 22, 5056-5094.	1.7	162
4	Novel and Convenient Synthesis of Substituted Quinolines by Copper- or Palladium-Catalyzed Cyclodehydration of 1-(2-Aminoaryl)-2-yn-1-ols. Journal of Organic Chemistry, 2007, 72, 6873-6877.	1.7	111
5	An Improved Procedure for the Palladium-Catalyzed Oxidative Carbonylation of Î ² -Amino Alcohols to Oxazolidin-2-ones. Journal of Organic Chemistry, 2003, 68, 601-604.	1.7	101
6	A Simple and Mild Synthesis of 1H-Isochromenes and (Z)-1-Alkylidene-1,3-dihydroisobenzofurans by the lodocyclization of 2-(1-Alkynyl)benzylic Alcohols. Journal of Organic Chemistry, 2010, 75, 897-901.	1.7	98
7	Divergent Palladium Iodide Catalyzed Multicomponent Carbonylative Approaches to Functionalized Isoindolinone and Isobenzofuranimine Derivatives. Journal of Organic Chemistry, 2014, 79, 3506-3518.	1.7	94
8	Versatile Synthesis of Quinoline-3-Carboxylic Esters and Indol-2-Acetic Esters by Palladium-Catalyzed Carbonylation of 1-(2-Aminoaryl)-2-Yn-1-Ols. Journal of Organic Chemistry, 2008, 73, 4971-4977.	1.7	93
9	A Smart Nanovector for Cancer Targeted Drug Delivery Based on Graphene Quantum Dots. Nanomaterials, 2019, 9, 282.	1.9	83
10	PdI2-Based Catalysis for Carbonylation Reactions: A Personal Account. Catalysts, 2019, 9, 610.	1.6	71
11	An Unprecedented Pd-Catalyzed, Water-Promoted Sequential Oxidative Aminocarbonylationâ^'Cyclocarbonylation Process Leading to 2-Oxazolidinones. Organic Letters, 2007, 9, 3319-3322.	2.4	70
12	Recent Advances in the Synthesis of Thiophene Derivatives by Cyclization of Functionalized Alkynes. Molecules, 2014, 19, 15687-15719.	1.7	70
13	A novel and efficient method for the Pd-catalysed oxidative carbonylation of amines to symmetrically and unsymmetrically substituted ureas. Chemical Communications, 2003, , 486-487.	2.2	67
14	1,3-Dipolar cycloaddition of arynes with azomethine imines: synthesis of 1,2-dihydropyrazolo[1,2-a]indazol-3(9H)-ones. Tetrahedron Letters, 2009, 50, 4067-4070.	0.7	64
15	Catalytic Oxidative Carbonylation of Amino Moieties to Ureas, Oxamides, 2â€Oxazolidinones, and Benzoxazolones. ChemSusChem, 2015, 8, 2204-2211.	3.6	63
16	A Novel Synthesis of 2-Functionalized Benzofurans by Palladium-Catalyzed Cycloisomerization of 2-(1-Hydroxyprop-2-ynyl)phenols Followed by Acid-Catalyzed Allylic Isomerization or Allylic Nucleophilic Substitution. Journal of Organic Chemistry, 2008, 73, 7336-7341.	1.7	60
17	An Iodocyclization Approach to Substituted 3-Iodothiophenes. Journal of Organic Chemistry, 2012, 77, 7640-7645.	1.7	60
18	A Novel Palladium-Catalyzed Dicarbonylation Process Leading to Coumarins. Journal of Organic Chemistry, 2008, 73, 756-759.	1.7	55

#	Article	IF	CITATIONS
19	A step forward to a more efficient wastewater treatment by membrane surface modification via polymerizable bicontinuous microemulsion. Journal of Membrane Science, 2015, 482, 103-114.	4.1	55
20	Multicomponent Cascade Reactions: A Novel and Expedient Approach to Functionalized Indoles by an Unprecedented Nucleophilic Additionâ€Heterocyclizationâ€Oxidative Alkoxycarbonylation Sequence. Advanced Synthesis and Catalysis, 2010, 352, 3355-3363.	2.1	54
21	Recent Advances in the Chemical Fixation of Carbon Dioxide: A Green Route to Carbonylated Heterocycle Synthesis. Catalysts, 2019, 9, 511.	1.6	54
22	Cascade Reactions: Sequential Homobimetallic Catalysis Leading to Benzofurans and \hat{l}^2 , \hat{l}^3 -Unsaturated Esters. Advanced Synthesis and Catalysis, 2006, 348, 1101-1109.	2.1	53
23	Synthesis of Benzothiophene Derivatives by Pd-Catalyzed or Radical-Promoted Heterocyclodehydration of 1-(2-Mercaptophenyl)-2-yn-1-ols. Journal of Organic Chemistry, 2011, 76, 8277-8286.	1.7	53
24	A Palladium Iodide-Catalyzed Carbonylative Approach to Functionalized Pyrrole Derivatives. Journal of Organic Chemistry, 2012, 77, 4005-4016.	1.7	53
25	A General Synthesis of Indoleâ€3â€carboxylic Esters by Palladiumâ€Catalyzed Direct Oxidative Carbonylation of 2â€Alkynylaniline Derivatives. European Journal of Organic Chemistry, 2012, 2012, 2549-2559.	1.2	53
26	Development of graphene-PVDF composite membranes for membrane distillation. Journal of Membrane Science, 2020, 604, 118017.	4.1	52
27	Cascade Reactions:  A New Synthesis of 2-Benzofuran-2-ylacetamides by Sequential Pd(0)-Catalyzed Deallylationâ^'Pd(II)-Catalyzed Aminocarbonylative Heterocyclization of 1-(2-Allyloxyaryl)-2-yn-1-ols. Journal of Organic Chemistry, 2007, 72, 9278-9282.	1.7	51
28	Recent Progress in the Transition Metal Catalyzed Synthesis of Indoles. Catalysts, 2018, 8, 458.	1.6	51
29	Copper-Catalyzed Synthesis of Substituted Furans and Pyrroles by Heterocyclodehydration and Tandem Heterocyclodehydration–Hydration of 3-Yne-1,2-diols and 1-Amino-3-yn-2-ol Derivatives. Journal of Organic Chemistry, 2013, 78, 4919-4928.	1.7	50
30	Synthesis of thiophenes in a deep eutectic solvent: heterocyclodehydration and iodocyclization of 1-mercapto-3-yn-2-ols in a choline chloride/glycerol medium. Tetrahedron, 2016, 72, 4239-4244.	1.0	50
31	A New Synthesis of 2,3-Dihydrobenzo[1,4]dioxine and 3,4-Dihydro-2H-benzo[1,4]oxazine Derivatives by Tandem Palladium-Catalyzed Oxidative Aminocarbonylationâ°Cyclization of 2-Prop-2-ynyloxyphenols and 2-Prop-2-ynyloxyanilines. Journal of Organic Chemistry, 2006, 71, 7895-7898.	1.7	49
32	A General and Expedient Synthesis of 5―and 6â€Membered Cyclic Carbonates by Palladiumâ€Catalyzed Oxidative Carbonylation of 1,2―and 1,3â€Diols. ChemSusChem, 2011, 4, 1778-1786.	3.6	49
33	Recent Advances in the Synthesis of Iodoheterocycles via Iodocyclization of Functionalized Alkynes. Current Organic Chemistry, 2014, 18, 341-358.	0.9	48
34	Synthesis of Substituted Thiophenes by Palladium-Catalyzed Heterocyclodehydration of 1-Mercapto-3-yn-2-ols in Conventional and Nonconventional Solvents. Journal of Organic Chemistry, 2012, 77, 9905-9909.	1.7	44
35	A novel and efficient method for the catalytic direct oxidative carbonylation of 1,2- and 1,3-diols to 5-membered and 6-membered cyclic carbonates. Tetrahedron Letters, 2009, 50, 7330-7332.	0.7	40
36	Urea derivatives from carbon dioxide and amines by guanidine catalysis: Easy access to imidazolidin-2-ones under solvent-free conditions. Journal of CO2 Utilization, 2017, 21, 553-561.	3.3	40

#	Article	IF	CITATIONS
37	Synthesis of Furan-3-carboxylic and 4-Methylene-4,5-dihydrofuran-3-carboxylic Esters by Direct Palladium lodide Catalyzed Oxidative Carbonylation of 3-Yne-1,2-diol Derivatives. Journal of Organic Chemistry, 2012, 77, 8657-8668.	1.7	39
38	Divergent Multicomponent Tandem Palladiumâ€Catalyzed Aminocarbonylationâ€Cyclization Approaches to Functionalized Imidazothiazinones and Imidazothiazoles. ChemCatChem, 2015, 7, 2206-2213.	1.8	38
39	Sequential homobimetallic catalysis: an unprecedented tandem Pd(0)-catalysed deprotection? Pd(ii)-catalysed heterocyclisation reaction leading to benzofurans. Chemical Communications, 2005, , 271.	2.2	37
40	Phytotoxic Potential and Biological Activity of Three Synthetic Coumarin Derivatives as New Natural-Like Herbicides. Molecules, 2015, 20, 17883-17902.	1.7	35
41	UV-LED induced bicontinuous microemulsions polymerisation for surface modification of commercial membranes – Enhancing the antifouling properties. Separation and Purification Technology, 2018, 194, 149-160.	3.9	35
42	A Palladiumâ€Catalyzed Carbonylation Approach to Eightâ€Membered Lactam Derivatives with Antitumor Activity. Chemistry - A European Journal, 2016, 22, 3053-3064.	1.7	34
43	Palladiumâ€Catalyzed Double Cyclization Processes Leading to Polycyclic Heterocycles: Recent Advances. European Journal of Organic Chemistry, 2019, 2019, 5073-5092.	1.2	34
44	Cascade Reactions: A Multicomponent Approach to Functionalized Indane Derivatives by a Tandem Palladium―Catalyzed Carbamoylation/Carbocylization Process. Advanced Synthesis and Catalysis, 2014, 356, 2547-2558.	2.1	32
45	An Easy and Convenient Synthesis of 2-Furan-2-ylacetamides by Sequential Palladium-Catalyzed Oxidative Aminocarbonylation of (Z)-2-En-4-yn-1-ols/Conjugate Addition/Aromatization. Synthesis, 2006, 2006, 4247-4251.	1.2	31
46	Recyclable catalytic synthesis of substituted quinolines: copper-catalyzed heterocyclization of 1-(2-aminoaryl)-2-yn-1-ols in ionic liquids. Tetrahedron, 2009, 65, 8507-8512.	1.0	31
47	Palladium-catalyzed oxidative heterocyclodehydration-alkoxycarbonylation of 3-yne-1,2-diols: a novel and expedient approach to furan-3-carboxylic esters. Tetrahedron Letters, 2010, 51, 1663-1665.	0.7	29
48	Catalytic Carbonylative Double Cyclization of 2-(3-Hydroxy-1-yn-1-yl)phenols in Ionic Liquids Leading to Furobenzofuranone Derivatives. Journal of Organic Chemistry, 2019, 84, 7303-7311.	1.7	29
49	A simple and convenient synthesis of substituted furans and pyrroles by CuCl2-catalyzed heterocyclodehydration of 3-yne-1,2-diols and N-Boc- or N-tosyl-1-amino-3-yn-2-ols. Tetrahedron Letters, 2010, 51, 3565-3567.	0.7	28
50	Versatile Synthesis of Isoquinolines and Isochromenes by Pd atalyzed Oxidative Carbonylation of (2â€Alkynyl)benzylideneamine Derivatives. European Journal of Organic Chemistry, 2011, 2011, 5626-5635.	1.2	28
51	Novel low-fouling membranes from lab to pilot application in textile wastewater treatment. Journal of Colloid and Interface Science, 2018, 515, 208-220.	5.0	28
52	A recyclable and base-free method for the synthesis of 3-iodothiophenes by the iodoheterocyclisation of 1-mercapto-3-alkyn-2-ols in ionic liquids. Organic and Biomolecular Chemistry, 2014, 12, 651-659.	1.5	26
53	A new approach to isoindolinone derivatives by sequential palladium iodide-catalyzed oxidative aminocarbonylation–heterocyclization of 2-ethynylbenzamides. Tetrahedron Letters, 2012, 53, 6694-6696.	0.7	25
54	Catalytic Synthesis of Hydroxymethylâ€2â€oxazolidinones from Glycerol or Glycerol Carbonate and Urea. ChemSusChem, 2013, 6, 345-352.	3.6	25

#	Article	IF	CITATIONS
55	Palladiumâ€Catalyzed Carbonylative Multicomponent Synthesis of Functionalized Benzimidazothiazoles. Asian Journal of Organic Chemistry, 2016, 5, 560-567.	1.3	25
56	Launching deep eutectic solvents (DESs) and natural deep eutectic solvents (NADESs), in combination with different harmless co-solvents, for the preparation of more sustainable membranes. Journal of Membrane Science, 2022, 649, 120387.	4.1	25
57	Auto-Tandem Catalysis in Ionic Liquids: Synthesis of 2-Oxazolidinones by Palladium-Catalyzed Oxidative Carbonylation of Propargylic Amines in EmimEtSO4. Molecules, 2016, 21, 897.	1.7	24
58	Tandem catalysis in ionic liquids: a recyclable catalytic synthesis of benzofuran derivatives. Tetrahedron, 2010, 66, 6156-6161.	1.0	23
59	Synthesis and Biological Properties of 5-(1H-1,2,3-Triazol-4-yl)isoxazolidines: A New Class of C-Nucleosides. Molecules, 2015, 20, 5260-5275.	1.7	23
60	Neutral vs anionic palladium iodide-catalyzed carbonylation of terminal arylacetylenes. Journal of Molecular Catalysis A, 2015, 398, 115-126.	4.8	23
61	Synthesis of spiro[isoindole-1,5'-isoxazolidin]-3(2 <i>H</i>)-ones as potential inhibitors of the MDM2-p53 interaction. Beilstein Journal of Organic Chemistry, 2016, 12, 2793-2807.	1.3	23
62	Divergent Syntheses of $(\langle i\rangle Z\langle i\rangle)$ -3-Alkylideneisobenzofuran- $1(3\langle i\rangle H\langle i\rangle)$ -ones and $1\langle i\rangle H\langle i\rangle$ -lsochromen-1-ones by Copper-Catalyzed Cycloisomerization of 2-Alkynylbenzoic Acids in Ionic Liquids. Journal of Organic Chemistry, 2018, 83, 6673-6680.	1.7	23
63	Benzofuran-2-acetic ester derivatives induce apoptosis in breast cancer cells by upregulating p21 Cip/WAF1 gene expression in p53-independent manner. DNA Repair, 2017, 51, 20-30.	1.3	22
64	An Unprecedented Pdâ€Catalyzed Carbonylative Route to Fused Furo[3,4â€ <i>b</i>) indolâ€1â€ones. Chemistry - A European Journal, 2018, 24, 4835-4840.	1.7	22
65	5-(Carbamoylmethylene)-oxazolidin-2-ones as a Promising Class of Heterocycles Inducing Apoptosis Triggered by Increased ROS Levels and Mitochondrial Dysfunction in Breast and Cervical Cancer. Biomedicines, 2020, 8, 35.	1.4	22
66	Selective Aryl αâ€Diimine/Palladiumâ€Catalyzed Bisâ€Alkoxy―carbonylation of Olefins for the Synthesis of Substituted Succinic Diesters. Advanced Synthesis and Catalysis, 2015, 357, 177-184.	2.1	21
67	Site-Selective Double and Tetracyclization Routes to Fused Polyheterocyclic Structures by Pd-Catalyzed Carbonylation Reactions. Organic Letters, 2020, 22, 1569-1574.	2.4	21
68	Recent Advances in the Catalytic Synthesis of Imidazolidin-2-ones and Benzimidazolidin-2-ones. Catalysts, 2019, 9, 28.	1.6	20
69	Oxidative Alkoxycarbonylation of Alkynes by Means of Aryl αâ€Diimine Palladium(II) Complexes as Catalysts. Advanced Synthesis and Catalysis, 2016, 358, 3244-3253.	2.1	19
70	Titanium Surface Modification for Implantable Medical Devices with Anti-Bacterial Adhesion Properties. Materials, 2022, 15, 3283.	1.3	19
71	A highly efficient Pd/Cul-catalyzed oxidative alkoxycarbonylation of α-olefins to unsaturated esters. Journal of Molecular Catalysis A, 2017, 426, 435-443.	4.8	18
72	Divergent syntheses of iodinated isobenzofuranones and isochromenones by iodolactonization of 2-alkynylbenzoic acids in ionic liquids. Organic and Biomolecular Chemistry, 2017, 15, 4831-4841.	1.5	18

#	Article	IF	CITATIONS
73	Synthesis and Biological Activity of Triazoleâ€Appended N,Oâ€Nucleosides. European Journal of Organic Chemistry, 2014, 2014, 5442-5447.	1.2	17
74	Copperâ€Catalyzed Recyclable Synthesis of (<i>Z</i>)â€3â€Alkylideneisoindolinones by Cycloisomerization of 2â€Alkynylbenzamides in Ionic Liquids. ChemistrySelect, 2017, 2, 894-899.	0.7	17
75	Phosphonium ionic liquid-polyacrylate copolymer membranes for improved CO2 separations. Journal of Membrane Science, 2021, 635, 119479.	4.1	17
76	Synthesis of Imidazolidin-2-ones and Imidazol-2-ones via Base-Catalyzed Intramolecular Hydroamidation of Propargylic Ureas under Ambient Conditions. Journal of Organic Chemistry, 2019, 84, 3477-3490.	1.7	16
77	Palladium catalysis with sulfurated substrates under aerobic conditions: A direct oxidative carbonylation approach to thiophene-3-carboxylic esters. Journal of Catalysis, 2021, 393, 335-343.	3.1	16
78	Advances in Visible-Light-Mediated Carbonylative Reactions via Carbon Monoxide (CO) Incorporation. Catalysts, 2021, 11, 918.	1.6	16
79	Pd ⁰ â€Catalyzed Intramolecular αâ€Arylation of Sulfones: Domino Reactions in the Synthesis of Functionalized Tetrahydroisoquinolines. Chemistry - A European Journal, 2015, 21, 4580-4584.	1.7	15
80	Diastereospecific Bisâ€alkoxycarbonylation of 1,2â€Disubstituted Olefins Catalyzed by Aryl αâ€Diimine Palladium(II) Catalysts. Advanced Synthesis and Catalysis, 2018, 360, 3507-3517.	2.1	15
81	Unprecedented cooperative DBU-CuCl2 catalysis for the incorporation of carbon dioxide into homopropargylic amines leading to 6-methylene-1,3-oxazin-2-ones. Journal of Catalysis, 2020, 387, 145-153.	3.1	14
82	Synthesis and Antibacterial Activity of Polymerizable Acryloyloxyalkyltriethyl Ammonium Salts. ChemPlusChem, 2017, 82, 1235-1244.	1.3	13
83	Enantioselective Vinylogous Reactions of 3-Alkylidene Oxindoles. Synthesis, 2018, 50, 2463-2472.	1.2	13
84	Catalytic Double Cyclization Process for Antitumor Agents against Breast Cancer Cell Lines. IScience, 2018, 3, 279-288.	1.9	13
85	Recent Advances in Organocatalyzed Asymmetric Synthesis of Benzopyran and Benzodihydropyran (Chromane) Nuclei. Symmetry, 2019, 11, 1510.	1.1	13
86	A Stereoselective, Multicomponent Catalytic Carbonylative Approach to a New Class of \hat{l}_{\pm},\hat{l}^2 -Unsaturated \hat{l}^3 -Lactam Derivatives. Catalysts, 2021, 11, 227.	1.6	13
87	Palladium-Catalyzed Carbonylative Synthesis of Functionalized Benzimidazopyrimidinones. Synthesis, 2018, 50, 267-277.	1.2	12
88	Membrane Technology in Catalytic Carbonylation Reactions. Catalysts, 2019, 9, 614.	1.6	12
89	Benzofuranâ€2â€acetic esters as a new class of naturalâ€like herbicides. Pest Management Science, 2020, 76, 395-404.	1.7	12
90	Multicomponent Synthesis of Benzothiophenâ€2â€acetic Esters by a Palladium Iodide Catalyzed <i>S</i> àê€yclization – Alkoxycarbonylation Sequence. Advanced Synthesis and Catalysis, 2021, 363, 4612-4620.	2.1	12

#	Article	IF	CITATIONS
91	3-(Methoxycarbonylmethylene)isobenzofuran-1-imines as a New Class of Potential Herbicides. Molecules, 2014, 19, 8261-8275.	1.7	11
92	A Regio―and Stereoselective Carbonylative Approach to Alkyl (⟨iゝZ⟨/iゝ)â€2â€[3â€Oxoisobenzofuranâ€1â€(3⟨i⟩H⟨/i⟩)â€ylidene]acetates. Advanced Synthesis and Catalysis, 361, 690-695.	2021.9,	11
93	Bisâ€Alkoxycarbonylation of Acrylic Esters and Amides for the Synthesis of 2â€Alkoxycarbonyl or 2â€Carbamoyl Succinates. Advanced Synthesis and Catalysis, 2020, 362, 533-544.	2.1	11
94	A new microwave-assisted thionation-heterocyclization process leading to benzo[c]thiophene-1(3H)-thione and 1H-isothiochromene-1-thione derivatives. RSC Advances, 2016, 6, 20777-20780.	1.7	10
95	Synthesis and Antibacterial Activity of Polymerizable Acryloyloxyalkyltriethyl Ammonium Salts. ChemPlusChem, 2017, 82, 1233-1234.	1.3	10
96	A polyoxometalate-based self-cleaning smart material with oxygenic activity for water remediation with membrane technology. Applied Materials Today, 2021, 23, 101002.	2.3	10
97	Acidâ€Catalysed or Radicalâ€Promoted Allylic Substitution of 2â€Methyleneâ€2,3â€dihydrobenzofuranâ€3â€ols Thiol Derivatives: a Novel and Expedient Synthesis of 2â€(Thiomethyl)benzofurans. European Journal of Organic Chemistry, 2010, 2010, 3459-3464.	with 1.2	9
98	A Recyclable Palladium-Catalyzed Synthesis of 2-Methylene-2,3-Dihydrobenzofuran-3-ols by Cycloisomerization of 2-(1-Hydroxyprop-2-ynyl)phenols in Ionic Liquids. Molecules, 2013, 18, 10901-10911.	1.7	9
99	Bromide Ion Exchange with a Keggin Polyoxometalate on Functionalized Polymeric Membranes: A Theoretical and Experimental Study. Journal of Physical Chemistry B, 2014, 118, 2396-2404.	1.2	9
100	Membrane Bioreactor–Treated Domestic Wastewater for Sustainable Reuse in the Lake Victoria Region. Integrated Environmental Assessment and Management, 2020, 16, 942-953.	1.6	9
101	Palladium iodide catalyzed carbonylative double cyclization to a new class of S,O-bicyclic heterocycles. Catalysis Today, 2022, 397-399, 631-638.	2.2	9
102	A palladium iodide catalyzed regioselective carbonylative route to isocoumarin and thienopyranone carboxylic esters. Journal of Catalysis, 2022, 405, 164-182.	3.1	9
103	Synthesis of Benzothiophene-3-carboxylic Esters by Palladium Iodide-Catalyzed Oxidative Cyclization–Deprotection–Alkoxycarbonylation Sequence under Aerobic Conditions. Journal of Organic Chemistry, 2023, 88, 5180-5186.	1.7	9
104	New Polymeric Films with Antibacterial Activity Obtained by UV-induced Copolymerization of Acryloyloxyalkyltriethylammonium Salts with 2-Hydroxyethyl Methacrylate. International Journal of Molecular Sciences, 2019, 20, 2696.	1.8	8
105	Anticancer potential of novel $\hat{l}\pm,\hat{l}^2$ -unsaturated \hat{l}^3 -lactam derivatives targeting the PI3K/AKT signaling pathway. Biochemical Pharmacology, 2021, 190, 114659.	2.0	8
106	Base-free conjugate addition of aliphatic nitro compounds to enones inÂBmimNTf2: a recyclable synthesis of γ-nitro ketones. Tetrahedron, 2012, 68, 5852-5856.	1.0	7
107	Intramolecular oxidative palladium-catalyzed diamination reactions of alkenyl sulfamates: an efficient synthesis of [1,2,5]thiadiazolo-fused piperazinones. RSC Advances, 2016, 6, 57521-57529.	1.7	7
108	Combined Effect of Palladium Catalyst and the Alcohol to Promote the Uncommon Bisâ€Alkoxycarbonylation of Allylic Substrates. ChemCatChem, 2022, 14, .	1.8	7

#	Article	IF	Citations
109	Microwaveâ€Assisted Synthesis of Sulfurated Heterocycles with Herbicidal Activity: Reaction of 2â€Alkynylbenzoic Acids with Lawesson's Reagent. ChemPlusChem, 2019, 84, 942-950.	1.3	6
110	Pd-Catalysed oxidative carbonylation of \hat{l}_{\pm} -amino amides to hydantoins under mild conditions. Chemical Communications, 2021, 58, 294-297.	2.2	6
111	(Z)-4-(Carbomethoxymethylene)-2-(4-fluorophenyl)-4H-benzo[d][1,3]oxazine. MolBank, 2017, 2017, M927.	0.2	5
112	Modeling of Structure-Property Relationships of Polymerizable Surfactants with Antimicrobial Activity. Applied Sciences (Switzerland), 2018, 8, 1972.	1.3	5
113	Polemic against conclusions drawn in "Palladium/iodide catalyzed oxidative carbonylation of aniline to diphenylurea: Effect of ppm amounts of iron salts―(J. Catal. 369 (2019) 257–266). Journal of Catalysis, 2019, 380, 387-390.	3.1	5
114	Viscosity Modification of Polymerizable Bicontinuous Microemulsion by Controlled Radical Polymerization for Membrane Coating Applications. Membranes, 2020, 10, 246.	1.4	5
115	Iodolactonization of 3â€Alkynylthiopheneâ€2â€Carboxylic and 3â€Alkynylpicolinic Acids for the Synthesis of Fused Heterocycles. European Journal of Organic Chemistry, 2020, 2020, 3712-3725.	1.2	5
116	PdI2 as a Simple and Efficient Catalyst for the Hydroamination of Arylacetylenes with Anilines. Catalysts, 2020, 10, 176.	1.6	5
117	Deep Eutectic Solvents (DESs): Preliminary Results for Their Use Such as Biocides in the Building Cultural Heritage. Materials, 2022, 15, 4005.	1.3	5
118	Copper-Catalyzed Synthesis of Coumarins. A Mini-Review. Catalysts, 2021, 11, 1382.	1.6	4
119	Benzo[b]thiophene-2-carbaldehyde. MolBank, 2014, 2014, M823.	0.2	2
120	(S)-4-Isopropyl-5,5-diphenyloxazolidin-2-one. MolBank, 2018, 2018, M1017.	0.2	2
121	Catalytic Carbonylation Reactions. Catalysts, 2021, 11, 470.	1.6	1
122	Advances in Palladium-Catalyzed Carboxylation Reactions. Molecules, 2022, 27, 262.	1.7	1
123	Frontispiece: An Unprecedented Pd-Catalyzed Carbonylative Route to Fused Furo[3,4-b]indol-1-ones. Chemistry - A European Journal, 2018, 24, .	1.7	O
124	Dimethyl 2,2′-[Carbonylbis(azanediyl)](2S,2′S)-bis[3-(4-hydroxyphenyl)propanoate]. MolBank, 2018, 2018, M983.	0.2	O
125	Front Cover Picture: Diastereospecific Bis-alkoxycarbonylation of 1,2-Disubstituted Olefins Catalyzed by Aryl α-Diimine Palladium(II) Catalysts (Adv. Synth. Catal. 18/2018). Advanced Synthesis and Catalysis, 2018, 360, 3425-3425.	2.1	O
126	Synthesis, computational evaluation and pharmacological assessment of acetylsalicylic esters as anti-inflammatory agents. Medicinal Chemistry Research, 2019, 28, 292-299.	1.1	0

#	Article	lF	CITATIONS
127	Front Cover Picture: Bisâ€Alkoxycarbonylation of Acrylic Esters and Amides for the Synthesis of 2â€Alkoxycarbonyl or 2â€Carbamoyl Succinates (Adv. Synth. Catal. 3/2020). Advanced Synthesis and Catalysis, 2020, 362, 437-437.	2.1	O