Karen A Mather

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12039109/publications.pdf

Version: 2024-02-01

80 papers

6,507 citations

34 h-index 79698 **73** g-index

90 all docs 90 docs citations

90 times ranked 11442 citing authors

#	Article	IF	CITATIONS
1	Common genetic variants influence human subcortical brain structures. Nature, 2015, 520, 224-229.	27.8	772
2	The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging and Behavior, 2014, 8, 153-182.	2.1	696
3	Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nature Communications, 2018, 9, 2098.	12.8	484
4	The genetic architecture of the human cerebral cortex. Science, 2020, 367, .	12.6	450
5	The Sydney Memory and Ageing Study (MAS): methodology and baseline medical and neuropsychiatric characteristics of an elderly epidemiological non-demented cohort of Australians aged 70–90 years. International Psychogeriatrics, 2010, 22, 1248-1264.	1.0	286
6	Novel genetic loci associated with hippocampal volume. Nature Communications, 2017, 8, 13624.	12.8	250
7	Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nature Genetics, 2021, 53, 1636-1648.	21.4	223
8	Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nature Neuroscience, 2016, 19, 1569-1582.	14.8	213
9	Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof of concept. Nature Neuroscience, 2016, 19, 420-431.	14.8	204
10	Genetic architecture of subcortical brain structures in 38,851 individuals. Nature Genetics, 2019, 51, 1624-1636.	21.4	192
11	<i>APOE</i> genotype and MRI markers of cerebrovascular disease. Neurology, 2013, 81, 292-300.	1.1	149
12	APOE genotype and cognitive functioning in a large age-stratified population sample Neuropsychology, 2007, 21, 1-8.	1.3	143
13	Factors Predicting Reversion from Mild Cognitive Impairment to Normal Cognitive Functioning: A Population-Based Study. PLoS ONE, 2013, 8, e59649.	2.5	143
14	The effect of increased genetic risk for Alzheimer's disease on hippocampal and amygdala volume. Neurobiology of Aging, 2016, 40, 68-77.	3.1	115
15	Risk prediction of late-onset Alzheimer's disease implies an oligogenic architecture. Nature Communications, 2020, 11, 4799.	12.8	110
16	Risk Factors for Late-Life Cognitive Decline and Variation with Age and Sex in the Sydney Memory and Ageing Study. PLoS ONE, 2013, 8, e65841.	2.5	93
17	Cerebral small vessel disease genomics and its implications across the lifespan. Nature Communications, 2020, 11, 6285.	12.8	89
18	Genetic variants associated with longitudinal changes in brain structure across the lifespan. Nature Neuroscience, 2022, 25, 421-432.	14.8	75

#	Article	IF	CITATIONS
19	Aging, exceptional longevity and comparisons of the Hannum and Horvath epigenetic clocks. Epigenomics, 2017, 9, 689-700.	2.1	73
20	Review and meta-analysis of genetic polymorphisms associated with exceptional human longevity. Mechanisms of Ageing and Development, 2018, 175, 24-34.	4.6	71
21	Common Genetic Variation Indicates Separate Causes for Periventricular and Deep White Matter Hyperintensities. Stroke, 2020, 51, 2111-2121.	2.0	71
22	Genome-wide Studies of Verbal Declarative Memory in Nondemented Older People: The Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium. Biological Psychiatry, 2015, 77, 749-763.	1.3	67
23	Genetic correlations and genome-wide associations of cortical structure in general population samples of 22,824 adults. Nature Communications, 2020, 11, 4796.	12.8	61
24	Risk Profiles for Mild Cognitive Impairment Vary by Age and Sex: The Sydney Memory and Ageing Study. American Journal of Geriatric Psychiatry, 2012, 20, 854-865.	1.2	59
25	Risk Profiles of Subtypes of Mild Cognitive Impairment: The <scp>S</scp> ydney Memory and Ageing Study. Journal of the American Geriatrics Society, 2012, 60, 24-33.	2.6	56
26	Association of Copy Number Variation of the 15q11.2 BP1-BP2 Region With Cortical and Subcortical Morphology and Cognition. JAMA Psychiatry, 2020, 77, 420.	11.0	54
27	The association of APOE genotype and cognitive decline in interaction with risk factors in a 65–69 year old community sample. BMC Geriatrics, 2008, 8, 14.	2.7	53
28	Risk Factors for Mild Cognitive Impairment, Dementia and Mortality: The Sydney Memory and Ageing Study. Journal of the American Medical Directors Association, 2017, 18, 388-395.	2.5	53
29	Plasma lipidome is dysregulated in Alzheimer's disease and is associated with disease risk genes. Translational Psychiatry, 2021, 11, 344.	4.8	51
30	Genetic influences on individual differences in longitudinal changes in global and subcortical brain volumes: Results of the ENIGMA plasticity working group. Human Brain Mapping, 2017, 38, 4444-4458.	3.6	51
31	The Sydney Centenarian Study: methodology and profile of centenarians and near-centenarians. International Psychogeriatrics, 2013, 25, 993-1005.	1.0	49
32	Meta-analysis of genome-wide DNA methylation identifies shared associations across neurodegenerative disorders. Genome Biology, 2021, 22, 90.	8.8	49
33	The Genetics of White Matter Lesions. CNS Neuroscience and Therapeutics, 2011, 17, 525-540.	3.9	45
34	Plasma apolipoproteins and physical and cognitive health in very old individuals. Neurobiology of Aging, 2017, 55, 49-60.	3.1	42
35	Systematic review and meta-analysis of genetic studies of late-life depression. Neuroscience and Biobehavioral Reviews, 2017, 75, 129-139.	6.1	41
36	Genome-wide Meta-analysis Finds the ACSL5-ZDHHC6 Locus Is Associated with ALS and Links Weight Loss to the Disease Genetics. Cell Reports, 2020, 33, 108323.	6.4	41

#	Article	IF	Citations
37	Distinct Genetic Influences on Cortical and Subcortical Brain Structures. Scientific Reports, 2016, 6, 32760.	3.3	40
38	White Matter Hyperintensities Are Under Strong Genetic Influence. Stroke, 2016, 47, 1422-1428.	2.0	38
39	Genome-wide average DNA methylation is determined in utero. International Journal of Epidemiology, 2018, 47, 908-916.	1.9	38
40	Genome-wide study of DNA methylation shows alterations in metabolic, inflammatory, and cholesterol pathways in ALS. Science Translational Medicine, 2022, 14, eabj0264.	12.4	38
41	Epigenome-wide meta-analysis of blood DNA methylation and its association with subcortical volumes: findings from the ENIGMA Epigenetics Working Group. Molecular Psychiatry, 2021, 26, 3884-3895.	7.9	34
42	Genetic and environmental causes of variation in epigenetic aging across the lifespan. Clinical Epigenetics, 2020, 12, 158.	4.1	33
43	Genome-wide association study of 23,500 individuals identifies 7 loci associated with brain ventricular volume. Nature Communications, 2018, 9, 3945.	12.8	31
44	Effects of copy number variations on brain structure and risk for psychiatric illness: Largeâ€scale studies from the <scp>ENIGMA < /scp> working groups on <scp>CNVs < /scp>. Human Brain Mapping, 2022, 43, 300-328.</scp></scp>	3.6	30
45	Co-expression network analysis of peripheral blood transcriptome identifies dysregulated protein processing in endoplasmic reticulum and immune response in recurrent MDD in older adults. Journal of Psychiatric Research, 2018, 107, 19-27.	3.1	27
46	Grey matter atrophy of basal forebrain and hippocampus in mild cognitive impairment. Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, 487-493.	1.9	26
47	Differential gene expression in brain and peripheral tissues in depression across the life span: A review of replicated findings. Neuroscience and Biobehavioral Reviews, 2016, 71, 281-293.	6.1	26
48	A Meta-Analysis of Genome-Wide Association Studies of Growth Differentiation Factor-15 Concentration in Blood. Frontiers in Genetics, 2018, 9, 97.	2.3	26
49	Significant out-of-sample classification from methylation profile scoring for amyotrophic lateral sclerosis. Npj Genomic Medicine, 2020, 5, 10.	3.8	25
50	The Relationship Between Plasma AÎ ² Levels, Cognitive Function and Brain Volumetrics: Sydney Memory and Ageing Study. Current Alzheimer Research, 2016, 13, 243-255.	1.4	25
51	Genetics of ageing-related changes in brain white matter integrity – A review. Ageing Research Reviews, 2013, 12, 391-401.	10.9	24
52	1q21.1 distal copy number variants are associated with cerebral and cognitive alterations in humans. Translational Psychiatry, 2021, 11, 182.	4.8	24
53	Genetic influence on ageing-related changes in resting-state brain functional networks in healthy adults: A systematic review. Neuroscience and Biobehavioral Reviews, 2020, 113, 98-110.	6.1	23
54	Alcohol Consumption and Incident Dementia: Evidence from the Sydney Memory and Ageing Study. Journal of Alzheimer's Disease, 2016, 52, 529-538.	2.6	20

#	Article	IF	Citations
55	Genome-wide significant results identified for plasma apolipoprotein H levels in middle-aged and older adults. Scientific Reports, 2016, 6, 23675.	3.3	20
56	DNA Methylation in the Apolipoprotein-A1 Gene is Associated with Episodic Memory Performance in Healthy Older Individuals. Journal of Alzheimer's Disease, 2015, 44, 175-182.	2.6	19
57	Sydney Memory and Ageing Study: An epidemiological cohort study of brain ageing and dementia. International Review of Psychiatry, 2013, 25, 711-725.	2.8	16
58	IsCHCHD10Pro34Ser pathogenic for frontotemporal dementia and amyotrophic lateral sclerosis?: Figure 1. Brain, 2015, 138, e385-e385.	7.6	16
59	Global and Regional Development of the Human Cerebral Cortex: Molecular Architecture and Occupational Aptitudes. Cerebral Cortex, 2020, 30, 4121-4139.	2.9	16
60	Renin-Angiotensin System Genetic Polymorphisms and Brain White Matter Lesions in Older Australians. American Journal of Hypertension, 2014, 27, 1191-1198.	2.0	15
61	Genetics of hand grip strength in mid to late life. Age, 2015, 37, 9745.	3.0	15
62	Early life affects late-life health through determining DNA methylation across the lifespan: A twin study. EBioMedicine, 2022, 77, 103927.	6.1	15
63	APOE Genotype Differentially Modulates Plasma Lipids in Healthy Older Individuals, with Relevance to Brain Health. Journal of Alzheimer's Disease, 2019, 72, 703-716.	2.6	13
64	An investigation into early-life stress and cognitive function in older age. International Psychogeriatrics, 2020, 32, 1325-1329.	1.0	13
65	Investigating the influence of KIBRA and CLSTN2 genetic polymorphisms on cross-sectional and longitudinal measures of memory performance and hippocampal volume in older individuals. Neuropsychologia, 2015, 78, 10-17.	1.6	12
66	Downregulated transferrin receptor in the blood predicts recurrent MDD in the elderly cohort: A fuzzy forests approach. Journal of Affective Disorders, 2020, 267, 42-48.	4.1	12
67	The many ages of man. Current Opinion in Psychiatry, 2019, 32, 130-137.	6.3	10
68	Exceptional Longevity and Polygenic Risk for Cardiovascular Health. Genes, 2019, 10, 227.	2.4	9
69	The influence of rs53576 polymorphism in the oxytocin receptor (<i>OXTR</i>) gene on empathy in healthy adults by subtype and ethnicity: a systematic review and meta-analysis. Reviews in the Neurosciences, 2022, 33, 43-57.	2.9	9
70	Investigating the Genetics of Hippocampal Volume in Older Adults without Dementia. PLoS ONE, 2015, 10, e0116920.	2.5	8
71	Development of a shortâ€form version of the Reading the Mind in the Eyes Test for assessing theory of mind in older adults. International Journal of Geriatric Psychiatry, 2020, 35, 1322-1330.	2.7	8
72	Genetics of Microstructure of the Corpus Callosum in Older Adults. PLoS ONE, 2014, 9, e113181.	2.5	8

#	Article	IF	CITATIONS
73	Genetic and environmental determinants of variation in the plasma lipidome of older Australian twins. ELife, 2020, 9, .	6.0	8
74	Genetic factors and epigenetic mechanisms of longevity: current perspectives. Epigenomics, 2015, 7, 1339-1349.	2.1	7
75	The heritability of amyloid burden in older adults: the Older Australian Twins Study. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 303-308.	1.9	7
76	Tick tock: DNA methylation, the epigenetic clock and exceptional longevity. Epigenomics, 2016, 8, 1577-1582.	2.1	6
77	Investigating Olfactory Gene Variation and Odour Identification in Older Adults. Genes, 2021, 12, 669.	2.4	4
78	Parental Life Span and Polygenic Risk Score of Longevity Are Associated With White Matter Hyperintensities. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2022, 77, 689-696.	3.6	2
79	Sydney Centenarian Study. , 2016, , 1-8.		0
80	Sydney Centenarian Study. , 2017, , 2365-2372.		0