
Seyed Jamaleddin Peighambardoust

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1203866/publications.pdf

Version: 2024-02-01

Seved Jamaleddin

#	Article	IF	CITATIONS
1	Review of the proton exchange membranes for fuel cell applications. International Journal of Hydrogen Energy, 2010, 35, 9349-9384.	3.8	1,696
2	Review on recent progress in chitosan-based hydrogels for wastewater treatment application. Carbohydrate Polymers, 2018, 201, 264-279.	5.1	331
3	Investigation of physical properties and cell performance of Nafion/TiO2 nanocomposite membranes for high temperature PEM fuel cells. International Journal of Hydrogen Energy, 2010, 35, 9252-9260.	3.8	151
4	Adsorption of Crystal Violet Dye Using Activated Carbon of Lemon Wood and Activated Carbon/Fe3O4 Magnetic Nanocomposite from Aqueous Solutions: A Kinetic, Equilibrium and Thermodynamic Study. Molecules, 2021, 26, 2241.	1.7	151
5	A review on acrylic based hydrogels and their applications in wastewater treatment. Journal of Environmental Management, 2018, 217, 123-143.	3.8	148
6	Properties of active starch-based films incorporating a combination of Ag, ZnO and CuO nanoparticles for potential use in food packaging applications. Food Packaging and Shelf Life, 2019, 22, 100420.	3.3	142
7	Crystal violet dye sorption over acrylamide/graphene oxide bonded sodium alginate nanocomposite hydrogel. Chemosphere, 2021, 270, 129419.	4.2	133
8	Removal of malachite green using carboxymethyl cellulose-g-polyacrylamide/montmorillonite nanocomposite hydrogel. International Journal of Biological Macromolecules, 2020, 159, 1122-1131.	3.6	127
9	Adsorption mercury, cobalt, and nickel with a reclaimable and magnetic composite of hydroxyapatite/Fe3O4/polydopamine. Journal of Environmental Chemical Engineering, 2021, 9, 105709.	3.3	99
10	Antibacterial properties of LDPE nanocomposite films in packaging of UF cheese. LWT - Food Science and Technology, 2016, 65, 106-111.	2.5	98
11	Hydroxyapatite biomaterial production from chicken (femur and beak) and fishbone waste through a chemical less method for Cd2+ removal from shipbuilding wastewater. Journal of Hazardous Materials, 2021, 413, 125428.	6.5	94
12	Cadmium ion removal from aqueous media using banana peel biochar/Fe3O4/ZIF-67. Environmental Research, 2022, 211, 113020.	3.7	87
13	Influence of chitosan and magnetic iron nanoparticles on chromium adsorption behavior of natural clay: Adaptive neuro-fuzzy inference modeling. International Journal of Biological Macromolecules, 2020, 151, 355-365.	3.6	86
14	Evaluation of two cationic dyes removal from aqueous environments using CNT/MgO/CuFe2O4 magnetic composite powder: A comparative study. Journal of Environmental Chemical Engineering, 2021, 9, 104752.	3.3	82
15	Carbon nanotubes/β-cyclodextrin/MnFe2O4 as a magnetic nanocomposite powder for tetracycline antibiotic decontamination from different aqueous environments. Journal of Environmental Chemical Engineering, 2021, 9, 106344.	3.3	82
16	Preparation of clinoptilolite/starch/CoFe2O4 magnetic nanocomposite powder and its elimination properties for cationic dyes from water and wastewater. International Journal of Biological Macromolecules, 2021, 189, 432-442.	3.6	80
17	Development of Antibacterial Carboxymethyl Celluloseâ€Based Nanobiocomposite Films Containing Various Metallic Nanoparticles for Food Packaging Applications. Journal of Food Science, 2019, 84, 2537-2548.	1.5	77
18	Montmorillonite clay/starch/CoFe2O4 nanocomposite as a superior functional material for uptake of cationic dye molecules from water and wastewater. Materials Chemistry and Physics, 2022, 284, 126088.	2.0	77

Seved Jamaleddin

#	Article	IF	CITATIONS
19	Decoration of Citrus limon wood carbon with Fe3O4 to enhanced Cd2+ removal: A reclaimable and magnetic nanocomposite. Chemosphere, 2021, 282, 131088.	4.2	76
20	Development of new magnetic adsorbent of walnut shell ash/starch/Fe3O4 for effective copper ions removal: Treatment of groundwater samples. Chemosphere, 2022, 296, 133978.	4.2	75
21	Uptake of anionic and cationic dyes from water using natural clay and clay/starch/MnFe2O4 magnetic nanocomposite. Surfaces and Interfaces, 2020, 21, 100754.	1.5	71
22	Zn ²⁺ removal from the aqueous environment using a polydopamine/hydroxyapatite/Fe ₃ O ₄ magnetic composite under ultrasonic waves. RSC Advances, 2021, 11, 27309-27321.	1.7	70
23	Nickel ions abatement from aqueous solutions and shipbuilding industry wastewater using ZIF-8-chicken beak hydroxyapatite. Journal of Molecular Liquids, 2022, 356, 119003.	2.3	70
24	Improved mechanical and antibacterial properties of active LDPE films prepared with combination of Ag, ZnO and CuO nanoparticles. Food Packaging and Shelf Life, 2019, 22, 100391.	3.3	64
25	Decontamination of Cd2+ and Pb2+ from aqueous solution using a magnetic nanocomposite of eggshell/starch/Fe3O4. Journal of Water Process Engineering, 2022, 48, 102911.	2.6	63
26	Modification of bio-hydroxyapatite generated from waste poultry bone with MgO for purifying methyl violet-laden liquids. Environmental Science and Pollution Research, 2020, 27, 44218-44229.	2.7	60
27	Physical, mechanical, and antibacterial characteristics of bioâ€nanocomposite films loaded with Agâ€modified SiO ₂ and TiO ₂ nanoparticles. Journal of Food Science, 2020, 85, 1193-1202.	1.5	56
28	Nanocomposite films containing organoclay nanoparticles as an antimicrobial (active) packaging for potential food application. Journal of Food Processing and Preservation, 2018, 42, e13488.	0.9	54
29	Application of nano-silica particles generated from offshore white sandstone for cadmium ions elimination from aqueous media. Environmental Technology and Innovation, 2020, 19, 101031.	3.0	53
30	Adsorption ability evaluation of the poly(methacrylic acid-co-acrylamide)/cloisite 30B nanocomposite hydrogel as a new adsorbent for cationic dye removal. Environmental Research, 2022, 212, 113349.	3.7	53
31	Preparation, characterization and cell performance of durable nafion/SiO2 hybrid membrane for high-temperature polymeric fuel cells. Journal of Power Sources, 2012, 210, 350-357.	4.0	52
32	Development of novel active polypropylene based packaging films containing different concentrations of sorbic acid. Food Packaging and Shelf Life, 2018, 18, 87-94.	3.3	52
33	Migration analysis, antioxidant, and mechanical characterization of polypropyleneâ€based active food packaging films loaded with BHA, BHT, and TBHQ. Journal of Food Science, 2020, 85, 2317-2328.	1.5	47
34	Application of Organoclay Nanoparticle in Low-Density Polyethylene Films for Packaging of UF Cheese. Packaging Technology and Science, 2016, 29, 355-363.	1.3	46
35	Application of walnut shell ash/ZnO/K2CO3 as a new composite catalyst for biodiesel generation from Moringa oleifera oil. Fuel, 2022, 311, 122624.	3.4	46
36	Preparation and Characterization of Corn Starch/Clay Nanocomposite Films: Effect of Clay Content and Surface Modification. Starch/Staerke, 2018, 70, 1700251.	1.1	40

Seved Jamaleddin

#	Article	IF	CITATIONS
37	Synthesis and Characterization of Conductive Polypyrrole/Montmorillonite Nanocomposites via One-pot Emulsion Polymerization. Macromolecular Symposia, 2007, 247, 99-109.	0.4	39
38	Development and characterization of PLA-mPEG copolymer containing iron nanoparticle-coated carbon nanotubes for controlled delivery of Docetaxel. Polymer, 2017, 117, 117-131.	1.8	39
39	High performance of covalently grafted poly(o-methoxyaniline) nanocomposite in the presence of amine-functionalized graphene oxide sheets (POMA/f-GO) for supercapacitor applications. Journal of Materials Science: Materials in Electronics, 2017, 28, 5776-5787.	1.1	38
40	Self-humidifying nanocomposite membranes based on sulfonated poly(ether ether ketone) and heteropolyacid supported Pt catalyst for fuel cells. International Journal of Hydrogen Energy, 2011, 36, 10940-10957.	3.8	37
41	Effect of Pt-Cs 2.5 H 0.5 PW 12 O 40 catalyst addition on durability of self-humidifying nanocomposite membranes based on sulfonated poly (ether ether ketone) for proton exchange membrane fuel cell applications. International Journal of Hydrogen Energy, 2015, 40, 549-560.	3.8	36
42	Surface magnetization of hydrolyzed Luffa Cylindrica biowaste with cobalt ferrite nanoparticles for facile Ni2+ removal from wastewater. Environmental Research, 2022, 212, 113242.	3.7	36
43	Preparation and characterization of nylon-6/PPy/MMT composite of nanocomposite. Journal of Applied Polymer Science, 2007, 106, 697-705.	1.3	33
44	Application of waste chalk/CoFe2O4/K2CO3 composite as a reclaimable catalyst for biodiesel generation from sunflower oil. Chemosphere, 2022, 289, 133226. a MgO/K cmml:math	4.2	33
45	xmins:mml="http://www.w3.org/1998/Math/Math/MathML" display="inline" id="d1e1407" altimg="si3.svg"> < mml:mrow> < mml:msub> < mml:mrow /> < mml:mrow> < mml:mn>2 < /mml:mn> < /mml:mrow> < /mml:msub> < mml:msub> < mml:mrow> < mml:mrow> < mml:mrow> < /mml:mrow> < /mml	3.0 1sub> <td>30 nl:mrow></td>	30 nl:mrow>
46	Environmental Fechnology and Innovation, 2021, 21, Electrically conductive nanocomposite adhesives based on epoxy resin filled with silver coated nanocarbon black. Journal of Materials Science: Materials in Electronics, 2018, 29, 11840-11851.	1.1	23
47	Characterization of carboxymethyl cellulose-based active films incorporating non-modified and Ag or Cu-modified Cloisite 30B and montmorillonite nanoclays. Iranian Polymer Journal (English Edition), 2020, 29, 1087-1097.	1.3	21
48	Safranin-O cationic dye removal from wastewater using carboxymethyl cellulose-grafted-poly(acrylic) Tj ETQqO	0 0 rgBT /0	Overlock 10 Tf
49	Generation of biodiesel from edible waste oil using ZIF-67-KOH modified Luffa cylindrica biomass catalyst. Fuel, 2022, 322, 124181.	3.4	20
50	Electrically conductive epoxyâ€based nanocomposite adhesives loaded with silverâ€coated copper and silverâ€coated reduced graphene oxide nanoparticles. Polymers for Advanced Technologies, 2019, 30, 1996-2004.	1.6	19
51	Enhancement of Biodiesel Production from Chicken Fat Using MgO and MgO@Na ₂ O Nanocatalysts. Chemical Engineering and Technology, 2021, 44, 77-84.	0.9	16
52	Swelling and auramine-O adsorption of carboxymethyl cellulose grafted poly(methyl) Tj ETQq0 0 0 rgBT /Overlo 27, 807-818.	ock 10 Tf 5 1.3	0 147 Td (me 15
53	Optimization of the Amount of ZnO, CuO, and Ag Nanoparticles on Antibacterial Properties of Low-Density Polyethylene (LDPE) Films Using the Response Surface Method. Food Analytical Methods, 2021, 14, 98-107.	1.3	14
54	Properties and Application of Multifunctional Composite Polypropylene-Based Films Incorporating a Combination of BHT, BHA and Sorbic Acid in Extending Donut Shelf-Life. Molecules, 2020, 25, 5197.	1.7	13

#	Article	IF	CITATIONS
55	Active Polypropylene-Based Films Incorporating Combined Antioxidants and Antimicrobials: Preparation and Characterization. Foods, 2021, 10, 722.	1.9	11

Adsorption of methyl violet dye from wastewater using poly(methacrylic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 702 Td (acid-co-acrylami

57	Polystyrene-based composites and nanocomposites with reduced brominated-flame retardant. Iranian Polymer Journal (English Edition), 2016, 25, 607-614.	1.3	8
58	Effect of microbial lipase and transglutaminase on the textural, physicochemical, and microbial parameters of fresh quark cheese. Journal of Dairy Science, 2021, 104, 7489-7499.	1.4	5
59	Inhibition of Coliform Bacteria in Ultra-Filtrated Cheese Packed in Nanocomposite Films Containing Cloisite30B- Metal Nanoparticles. Nutrition and Food Sciences Research, 2018, 5, 23-30.	0.3	1