
Ana S Mestre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/120385/publications.pdf Version: 2024-02-01

ANA S MESTDE

#	Article	IF	CITATIONS
1	Key Factors for Activated Carbon Adsorption of Pharmaceutical Compounds from Wastewaters: A Multivariate Modelling Approach. Water (Switzerland), 2022, 14, 166.	1.2	14
2	Activated carbons in full-scale advanced wastewater treatment. , 2022, , 433-475.		2
3	Individual and competitive adsorption of ibuprofen and caffeine from primary sewage effluent by yeast-based activated carbon and magnetic carbon nanocomposite. Sustainable Chemistry and Pharmacy, 2022, 28, 100703.	1.6	9
4	Engineered pine nut shell derived activated carbons for improved removal of recalcitrant pharmaceuticals in urban wastewater treatment. Journal of Hazardous Materials, 2022, 437, 129319.	6.5	11
5	Solar Light-Induced Methylene Blue Removal over TiO2/AC Composites and Photocatalytic Regeneration. Nanomaterials, 2021, 11, 3016.	1.9	11
6	Biomass-derived nanoporous carbons as electrocatalysts for oxygen reduction reaction. Catalysis Today, 2020, 357, 269-278.	2.2	18
7	The role of nanoporous carbon materials in catalytic cyclohexane oxidation. Catalysis Today, 2020, 357, 46-55.	2.2	18
8	Assessing the applicability of a new carob waste-derived powdered activated carbon to control pharmaceutical compounds in wastewater treatment. Science of the Total Environment, 2020, 743, 140791.	3.9	29
9	Carbon-Based Sorbent Coatings for the Determination of Pharmaceutical Compounds by Bar Adsorptive Microextraction. ACS Applied Bio Materials, 2020, 3, 2078-2091.	2.3	5
10	Photocatalytic Degradation of Pharmaceuticals Carbamazepine, Diclofenac, and Sulfamethoxazole by Semiconductor and Carbon Materials: A Review. Molecules, 2019, 24, 3702.	1.7	92
11	Chemically activated high grade nanoporous carbons from low density renewable biomass (Agave) Tj ETQq1 681-693.	1 0.784314 rg 5.0	gBT /Overloci 41
12	Apple tree branches derived activated carbons for the removal of β-blocker atenolol. Chemical Engineering Journal, 2018, 345, 669-678.	6.6	44
13	Solventless Olefin Epoxidation Using a Mo–Loaded Sisal Derived Acidâ€Char Catalyst. ChemistrySelect, 2018, 3, 10357-10363.	0.7	3
14	Pharmaceuticals removal by activated carbons: Role of morphology on cyclic thermal regeneration. Chemical Engineering Journal, 2017, 321, 233-244.	6.6	103
15	Designing micro- and mesoporous carbon networks by chemical activation of organic resins. Adsorption, 2017, 23, 303-312.	1.4	5
16	Biodiesel production waste as promising biomass precursor of reusable activated carbons for caffeine removal. RSC Advances, 2016, 6, 45419-45427.	1.7	19
17	Enhanced clofibric acid removal by activated carbons: Water hardness as a key parameter. Chemical Engineering Journal, 2016, 286, 538-548.	6.6	23
18	Sustainable activated carbons prepared from a sucrose-derived hydrochar: remarkable adsorbents for pharmaceutical compounds. RSC Advances, 2015, 5, 19696-19707.	1.7	68

ANA S MESTRE

#	Article	IF	CITATIONS
19	The influence of the textural properties of activated carbons on acetaminophen adsorption at different temperatures. Physical Chemistry Chemical Physics, 2015, 17, 12340-12349.	1.3	16
20	Sucrose-derived activated carbons: electron transfer properties and application as oxygen reduction electrocatalysts. RSC Advances, 2015, 5, 102919-102931.	1.7	35
21	Effect of the irradiation wavelength on the performance of nanoporous carbon as an additive to TiO2. Applied Catalysis A: General, 2015, 507, 91-98.	2.2	14
22	Carbon-based materials prepared from pine gasification residues for acetaminophen adsorption. Chemical Engineering Journal, 2014, 240, 344-351.	6.6	70
23	Visible light driven photooxidation of phenol on TiO2/Cu-loaded carbon catalysts. Carbon, 2014, 76, 183-192.	5.4	27
24	High performance microspherical activated carbons for methane storage and landfill gas or biogas upgrade. Journal of Materials Chemistry A, 2014, 2, 15337-15344.	5.2	81
25	Chars from gasification of coal and pine activated with K 2 CO 3 : Acetaminophen and caffeine adsorption from aqueous solutions. Journal of Colloid and Interface Science, 2014, 433, 94-103.	5.0	82
26	Activated carbons prepared from industrial pre-treated cork: Sustainable adsorbents for pharmaceutical compounds removal. Chemical Engineering Journal, 2014, 253, 408-417.	6.6	121
27	Influence of activated carbons porous structure on iopamidol adsorption. Carbon, 2014, 77, 607-615.	5.4	25
28	Development of a Powdered Activated Carbon in Bar Adsorptive Micro-Extraction for the Analysis of Morphine and Codeine in Human Urine. Journal of Chromatographic Science, 2012, 50, 574-581.	0.7	15
29	Effect of the Alcohol Cosolvent in the Removal of Caffeine by Activated Carbons. Industrial & Engineering Chemistry Research, 2012, 51, 9850-9857.	1.8	14
30	Characterization of the different fractions obtained from the pyrolysis of rope industry waste. Journal of Analytical and Applied Pyrolysis, 2012, 95, 31-37.	2.6	13
31	Dual role of copper on the reactivity of activated carbons from coal and lignocellulosic precursors. Microporous and Mesoporous Materials, 2012, 154, 68-73.	2.2	29
32	Powdered activated carbons as effective phases for bar adsorptive micro-extraction (BAμE) to monitor levels of triazinic herbicides in environmental water matrices. Talanta, 2011, 83, 1643-1649.	2.9	43
33	Activated carbons from sisal waste by chemical activation with K2CO3: Kinetics of paracetamol and ibuprofen removal from aqueous solution. Bioresource Technology, 2011, 102, 8253-8260.	4.8	132
34	Cork-based activated carbons as supported adsorbent materials for trace level analysis of ibuprofen and clofibric acid in environmental and biological matrices. Journal of Chromatography A, 2011, 1218, 6263-6270.	1.8	40
35	Surface heterogeneity effects of activated carbons on the kinetics of paracetamol removal from aqueous solution. Applied Surface Science, 2010, 256, 5171-5175.	3.1	90
36	Removal of an analgesic using activated carbons prepared from urban and industrial residues. Chemical Engineering Journal, 2010, 163, 249-255.	6.6	157

ANA S MESTRE

#	Article	IF	CITATIONS
37	Effect of solution pH on the removal of clofibric acid by cork-based activated carbons. Carbon, 2010, 48, 972-980.	5.4	53
38	Comparison of Methods to Obtain Micropore Size Distributions of Carbonaceous Materials from CO ₂ Adsorption Based on the Dubininâ^Radushkevich Isotherm. Industrial & Engineering Chemistry Research, 2010, 49, 4726-4730.	1.8	37
39	Waste-derived activated carbons for removal of ibuprofen from solution: Role of surface chemistry and pore structure. Bioresource Technology, 2009, 100, 1720-1726.	4.8	208
40	Activated Carbon Derived from Cork Powder Waste by KOH Activation: Preparation, Characterization, and VOCs Adsorption. Industrial & amp; Engineering Chemistry Research, 2008, 47, 5841-5846.	1.8	77
41	Activated carbons for the adsorption of ibuprofen. Carbon, 2007, 45, 1979-1988.	5.4	325
42	Granular activated carbons from powdered samples using clays as binders for the adsorption of organic vapours. Microporous and Mesoporous Materials, 2006, 93, 226-231.	2.2	34
43	Activated carbons from cork waste by chemical activation with K2CO3. Carbon, 2004, 42, 672-674.	5.4	55
44	Nanoporous Carbon Synthesis: An Old Story with Exciting New Chapters. , 0, , .		16