Ana S Mestre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/120385/publications.pdf Version: 2024-02-01

ANA S MESTDE

#	Article	IF	CITATIONS
1	Activated carbons for the adsorption of ibuprofen. Carbon, 2007, 45, 1979-1988.	10.3	325
2	Waste-derived activated carbons for removal of ibuprofen from solution: Role of surface chemistry and pore structure. Bioresource Technology, 2009, 100, 1720-1726.	9.6	208
3	Removal of an analgesic using activated carbons prepared from urban and industrial residues. Chemical Engineering Journal, 2010, 163, 249-255.	12.7	157
4	Activated carbons from sisal waste by chemical activation with K2CO3: Kinetics of paracetamol and ibuprofen removal from aqueous solution. Bioresource Technology, 2011, 102, 8253-8260.	9.6	132
5	Activated carbons prepared from industrial pre-treated cork: Sustainable adsorbents for pharmaceutical compounds removal. Chemical Engineering Journal, 2014, 253, 408-417.	12.7	121
6	Pharmaceuticals removal by activated carbons: Role of morphology on cyclic thermal regeneration. Chemical Engineering Journal, 2017, 321, 233-244.	12.7	103
7	Photocatalytic Degradation of Pharmaceuticals Carbamazepine, Diclofenac, and Sulfamethoxazole by Semiconductor and Carbon Materials: A Review. Molecules, 2019, 24, 3702.	3.8	92
8	Surface heterogeneity effects of activated carbons on the kinetics of paracetamol removal from aqueous solution. Applied Surface Science, 2010, 256, 5171-5175.	6.1	90
9	Chars from gasification of coal and pine activated with K 2 CO 3 : Acetaminophen and caffeine adsorption from aqueous solutions. Journal of Colloid and Interface Science, 2014, 433, 94-103.	9.4	82
10	High performance microspherical activated carbons for methane storage and landfill gas or biogas upgrade. Journal of Materials Chemistry A, 2014, 2, 15337-15344.	10.3	81
11	Activated Carbon Derived from Cork Powder Waste by KOH Activation: Preparation, Characterization, and VOCs Adsorption. Industrial & Engineering Chemistry Research, 2008, 47, 5841-5846.	3.7	77
12	Carbon-based materials prepared from pine gasification residues for acetaminophen adsorption. Chemical Engineering Journal, 2014, 240, 344-351.	12.7	70
13	Sustainable activated carbons prepared from a sucrose-derived hydrochar: remarkable adsorbents for pharmaceutical compounds. RSC Advances, 2015, 5, 19696-19707.	3.6	68
14	Activated carbons from cork waste by chemical activation with K2CO3. Carbon, 2004, 42, 672-674.	10.3	55
15	Effect of solution pH on the removal of clofibric acid by cork-based activated carbons. Carbon, 2010, 48, 972-980.	10.3	53
16	Apple tree branches derived activated carbons for the removal of β-blocker atenolol. Chemical Engineering Journal, 2018, 345, 669-678.	12.7	44
17	Powdered activated carbons as effective phases for bar adsorptive micro-extraction (BAμE) to monitor levels of triazinic herbicides in environmental water matrices. Talanta, 2011, 83, 1643-1649.	5.5	43
18	Chemically activated high grade nanoporous carbons from low density renewable biomass (Agave) Tj ETQq0 C	0 rgBT /Ove 9.4	erlock 10 Tf 5 41

681-693.

ANA S MESTRE

#	Article	IF	CITATIONS
19	Cork-based activated carbons as supported adsorbent materials for trace level analysis of ibuprofen and clofibric acid in environmental and biological matrices. Journal of Chromatography A, 2011, 1218, 6263-6270.	3.7	40
20	Comparison of Methods to Obtain Micropore Size Distributions of Carbonaceous Materials from CO ₂ Adsorption Based on the Dubininâ´'Radushkevich Isotherm. Industrial & Engineering Chemistry Research, 2010, 49, 4726-4730.	3.7	37
21	Sucrose-derived activated carbons: electron transfer properties and application as oxygen reduction electrocatalysts. RSC Advances, 2015, 5, 102919-102931.	3.6	35
22	Granular activated carbons from powdered samples using clays as binders for the adsorption of organic vapours. Microporous and Mesoporous Materials, 2006, 93, 226-231.	4.4	34
23	Dual role of copper on the reactivity of activated carbons from coal and lignocellulosic precursors. Microporous and Mesoporous Materials, 2012, 154, 68-73.	4.4	29
24	Assessing the applicability of a new carob waste-derived powdered activated carbon to control pharmaceutical compounds in wastewater treatment. Science of the Total Environment, 2020, 743, 140791.	8.0	29
25	Visible light driven photooxidation of phenol on TiO2/Cu-loaded carbon catalysts. Carbon, 2014, 76, 183-192.	10.3	27
26	Influence of activated carbons porous structure on iopamidol adsorption. Carbon, 2014, 77, 607-615.	10.3	25
27	Enhanced clofibric acid removal by activated carbons: Water hardness as a key parameter. Chemical Engineering Journal, 2016, 286, 538-548.	12.7	23
28	Biodiesel production waste as promising biomass precursor of reusable activated carbons for caffeine removal. RSC Advances, 2016, 6, 45419-45427.	3.6	19
29	Biomass-derived nanoporous carbons as electrocatalysts for oxygen reduction reaction. Catalysis Today, 2020, 357, 269-278.	4.4	18
30	The role of nanoporous carbon materials in catalytic cyclohexane oxidation. Catalysis Today, 2020, 357, 46-55.	4.4	18
31	The influence of the textural properties of activated carbons on acetaminophen adsorption at different temperatures. Physical Chemistry Chemical Physics, 2015, 17, 12340-12349.	2.8	16
32	Nanoporous Carbon Synthesis: An Old Story with Exciting New Chapters. , 0, , .		16
33	Development of a Powdered Activated Carbon in Bar Adsorptive Micro-Extraction for the Analysis of Morphine and Codeine in Human Urine. Journal of Chromatographic Science, 2012, 50, 574-581.	1.4	15
34	Effect of the Alcohol Cosolvent in the Removal of Caffeine by Activated Carbons. Industrial & Engineering Chemistry Research, 2012, 51, 9850-9857.	3.7	14
35	Effect of the irradiation wavelength on the performance of nanoporous carbon as an additive to TiO2. Applied Catalysis A: General, 2015, 507, 91-98.	4.3	14
36	Key Factors for Activated Carbon Adsorption of Pharmaceutical Compounds from Wastewaters: A Multivariate Modelling Approach. Water (Switzerland), 2022, 14, 166.	2.7	14

ANA S MESTRE

#	Article	IF	CITATIONS
37	Characterization of the different fractions obtained from the pyrolysis of rope industry waste. Journal of Analytical and Applied Pyrolysis, 2012, 95, 31-37.	5.5	13
38	Solar Light-Induced Methylene Blue Removal over TiO2/AC Composites and Photocatalytic Regeneration. Nanomaterials, 2021, 11, 3016.	4.1	11
39	Engineered pine nut shell derived activated carbons for improved removal of recalcitrant pharmaceuticals in urban wastewater treatment. Journal of Hazardous Materials, 2022, 437, 129319.	12.4	11
40	Individual and competitive adsorption of ibuprofen and caffeine from primary sewage effluent by yeast-based activated carbon and magnetic carbon nanocomposite. Sustainable Chemistry and Pharmacy, 2022, 28, 100703.	3.3	9
41	Designing micro- and mesoporous carbon networks by chemical activation of organic resins. Adsorption, 2017, 23, 303-312.	3.0	5
42	Carbon-Based Sorbent Coatings for the Determination of Pharmaceutical Compounds by Bar Adsorptive Microextraction. ACS Applied Bio Materials, 2020, 3, 2078-2091.	4.6	5
43	Solventless Olefin Epoxidation Using a Mo–Loaded Sisal Derived Acidâ€Char Catalyst. ChemistrySelect, 2018, 3, 10357-10363.	1.5	3
44	Activated carbons in full-scale advanced wastewater treatment. , 2022, , 433-475.		2