
Jakob Vinten-Johansen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12038242/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H579-H588.	1.5	1,744
2	Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovascular Research, 2004, 61, 481-497.	1.8	553
3	Postconditioning attenuates myocardial ischemia–reperfusion injury by inhibiting events in the early minutes of reperfusion. Cardiovascular Research, 2004, 62, 74-85.	1.8	495
4	Postconditioning and protection from reperfusion injury: where do we stand? * Position Paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovascular Research, 2010, 87, 406-423.	1.8	447
5	Novel targets and future strategies for acute cardioprotection: Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2017, 113, 564-585.	1.8	278
6	Postconditioning reduces infarct size via adenosine receptor activation by endogenous adenosine. Cardiovascular Research, 2005, 67, 124-133.	1.8	261
7	Ischaemic conditioning and targeting reperfusion injury: a 30Âyear voyage of discovery. Basic Research in Cardiology, 2016, 111, 70.	2.5	257
8	Hypoxic postconditioning reduces cardiomyocyte loss by inhibiting ROS generation and intracellular Ca2+ overload. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H1900-H1908.	1.5	244
9	Postconditioning: Reduction of reperfusion-induced injury. Cardiovascular Research, 2006, 70, 200-211.	1.8	238
10	Perivascular Inflammation After Balloon Angioplasty of Porcine Coronary Arteries. Circulation, 2001, 104, 2228-2235.	1.6	214
11	New Horizons in Cardioprotection. Circulation, 2011, 124, 1172-1179.	1.6	200
12	Postconditioning via stuttering reperfusion limits myocardial infarct size in rabbit hearts: role of ERK1/2. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H1618-H1626.	1.5	180
13	Coronary Microembolization: the Role of TNF- α in Contractile Dysfunction. Journal of Molecular and Cellular Cardiology, 2002, 34, 51-62.	0.9	176
14	Progressively developed myocardial apoptotic cell death during late phase of reperfusion. Apoptosis: an International Journal on Programmed Cell Death, 2001, 6, 279-290.	2.2	170
15	Myocardial protection with postconditioning is not enhanced by ischemic preconditioning. Annals of Thoracic Surgery, 2004, 78, 961-969.	0.7	170
16	Postconditioning attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways. Apoptosis: an International Journal on Programmed Cell Death, 2006, 11, 1583-1593.	2.2	161
17	Myocardial apoptosis and ischemic preconditioning. Cardiovascular Research, 2002, 55, 438-455.	1.8	160

18 Postconditioning. Circulation, 2005, 112, 2085-2088.

1.6 121

Jakob Vinten-Johansen

#	Article	IF	CITATIONS
19	Infarct-sparing effect of myocardial postconditioning is dependent on protein kinase C signalling. Cardiovascular Research, 2006, 70, 315-324.	1.8	116
20	Protective ischaemia in patients: preconditioning and postconditioning. Cardiovascular Research, 2009, 83, 234-246.	1.8	114
21	Reduction in myocardial infarct size by postconditioning in patients after percutaneous coronary intervention. Journal of Invasive Cardiology, 2007, 19, 424-30.	0.4	104
22	Gradual Reperfusion Reduces Infarct Size and Endothelial Injury but Augments Neutrophil Accumulation. Annals of Thoracic Surgery, 1997, 64, 1099-1107.	0.7	99
23	Dynamic Progression of Contractile and Endothelial Dysfunction and Infarct Extension in the Late Phase of Reperfusion. Journal of Surgical Research, 2000, 94, 133-144.	0.8	95
24	Broad-spectrum cardioprotection with adenosine. Annals of Thoracic Surgery, 1999, 68, 1942-1948.	0.7	94
25	Perivascular Responses after Angioplasty Which May Contribute to Postangioplasty Restenosis. Annals of the New York Academy of Sciences, 2001, 947, 68-92.	1.8	89
26	Evidence that cardioprotection by postconditioning involves preservation of myocardial opioid content and selective opioid receptor activation. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H1444-H1451.	1.5	88
27	Adenosine Attenuates Reperfusion-induced Apoptotic Cell Death by Modulating Expression of Bcl-2 and Bax Proteins. Journal of Molecular and Cellular Cardiology, 2001, 33, 57-68.	0.9	86
28	Preconditioning and postconditioning: innate cardioprotection from ischemia-reperfusion injury. Journal of Applied Physiology, 2007, 103, 1441-1448.	1.2	86
29	INHIBITION OF MYOCARDIAL APOPTOSIS BY POSTCONDITIONING IS ASSOCIATED WITH ATTENUATION OF OXIDATIVE STRESS-MEDIATED NUCLEAR FACTOR-I°I°B TRANSLOCATION AND TNFI±I± RELEASE. Shock, 2008, 29, 761-768.	1.0	83
30	Perconditioning and Postconditioning: Current Knowledge, Knowledge Gaps, Barriers to Adoption, and Future Directions. Journal of Cardiovascular Pharmacology and Therapeutics, 2011, 16, 260-266.	1.0	81
31	Improvement in Cardiac Function With Small Intestine Extracellular Matrix Is Associated With Recruitment of C-Kit Cells, Myofibroblasts, and Macrophages After Myocardial Infarction. Journal of the American College of Cardiology, 2010, 55, 1250-1261.	1.2	79
32	Nitric Oxide and the Vascular Endothelium in Myocardial Ischemia-Reperfusion Injurya. Annals of the New York Academy of Sciences, 1999, 874, 354-370.	1.8	75
33	Physiological Effects of Peroxynitrite. Circulation Research, 2000, 87, 170-172.	2.0	72
34	Inflammation, Proinflammatory Mediators and Myocardial Ischemia–reperfusion Injury. Hematology/Oncology Clinics of North America, 2007, 21, 123-145.	0.9	72
35	Persistent beneficial effect of postconditioning against infarct size: role of mitochondrial KATP channels during reperfusion. Basic Research in Cardiology, 2008, 103, 472-484.	2.5	72
36	Long-term inhibition of myocardial infarction by postconditioning during reperfusion. Basic Research in Cardiology, 2007, 102, 90-100.	2.5	65

#	Article	IF	CITATIONS
37	Postconditioning: a mechanical maneuver that triggers biological and molecular cardioprotective responses to reperfusion. Heart Failure Reviews, 2007, 12, 235-244.	1.7	64
38	Hyperkalemic cardioplegia for adult and pediatric surgery: end of an era?. Frontiers in Physiology, 2013, 4, 228.	1.3	58
39	A3 adenosine receptor activation attenuates neutrophil function and neutrophil-mediated reperfusion injury. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H1895-H1905.	1.5	54
40	A Novel Peptide Agonist of Formyl-Peptide Receptor-Like 1 (ALX) Displays Anti-Inflammatory and Cardioprotective Effects. Journal of Pharmacology and Experimental Therapeutics, 2009, 328, 426-434.	1.3	54
41	Perfusion-assisted direct coronary artery bypass: selective graft perfusion in off-pump cases. Annals of Thoracic Surgery, 2000, 69, 171-175.	0.7	52
42	Sequential patterns of chemokine- and chemokine receptor-synthesis following vessel wall injury in porcine coronary arteries. Atherosclerosis, 2007, 192, 75-84.	0.4	45
43	The Multidimensional Physiological Responses to Postconditioning. Antioxidants and Redox Signaling, 2011, 14, 791-810.	2.5	45
44	Adenosine in myocardial protection in on-pump and off-pump cardiac surgery. Annals of Thoracic Surgery, 2003, 75, S691-S699.	0.7	43
45	Myocardial protection in reperfusion with postconditioning. Expert Review of Cardiovascular Therapy, 2005, 3, 1035-1045.	0.6	43
46	lschemic preconditioning attenuates postischemic coronary artery endothelial dysfunction in a model of minimally invasive direct coronary artery bypass grafting. Journal of Thoracic and Cardiovascular Surgery, 1999, 117, 383-389.	0.4	42
47	Endogenous cardioprotection by ischaemic postconditioning and remote conditioning. Cardiovascular Research, 2012, 94, 206-216.	1.8	42
48	Attenuation of renal ischemia–reperfusion injury by postconditioning involves adenosine receptor and protein kinase C activation. Transplant International, 2010, 23, 217-226.	0.8	41
49	Adenosine, lidocaine and Mg2+improves cardiac and pulmonary function, induces reversible hypotension and exerts anti-inflammatory effects in an endotoxemic porcine model. Critical Care, 2014, 18, 682.	2.5	34
50	Small-Volume 7.5% NaCl Adenosine, Lidocaine, and Mg2+ Has Multiple Benefits During Hypotensive and Blood Resuscitation in the Pig Following Severe Blood Loss. Critical Care Medicine, 2014, 42, e329-e344.	0.4	33
51	PAR-2 activation at the time of reperfusion salvages myocardium via an ERK1/2 pathway in in vivo rat hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H2845-H2852.	1.5	29
52	The nondepolarizing, normokalemic cardioplegia formulation adenosine-lidocaine (adenocaine) exerts anti-neutrophil effects by synergistic actions of its components. Journal of Thoracic and Cardiovascular Surgery, 2012, 143, 1167-1175.	0.4	29
53	The science and clinical translation of remote postconditioning. Journal of Cardiovascular Medicine, 2013, 14, 206-213.	0.6	29
54	Experimental off-pump coronary artery revascularization with adenosine-enhanced reperfusion. Journal of Thoracic and Cardiovascular Surgery, 2001, 121, 570-579.	0.4	24

Jakob Vinten-Johansen

#	Article	IF	CITATIONS
55	Warm nondepolarizing adenosine and lidocaine cardioplegia: Continuous versus intermittent delivery. Journal of Thoracic and Cardiovascular Surgery, 2007, 133, 1171-1178.	0.4	17
56	Postconditioning attenuates acute intestinal ischemia–reperfusion injury. Kaohsiung Journal of Medical Sciences, 2013, 29, 119-127.	0.8	14
57	Comparison of AMP579 and adenosine in inhibition of cell-cell interaction between human neutrophil and vascular endothelial cell. Drug Development Research, 2000, 49, 266-272.	1.4	11
58	Melatonin as a cardioprotective therapy following ST-segment elevation myocardial infarction: is it really promising? Reply. Cardiovascular Research, 2017, 113, 1418-1419.	1.8	11
59	Commentary: Mitochondria are more than just the cells' powerhouse. Journal of Thoracic and Cardiovascular Surgery, 2020, 160, e33-e34.	0.4	6
60	Reperfusion Injury: Idle Curiosity or Therapeutic Vector?. Journal of Thrombosis and Thrombolysis, 1997, 4, 59-61.	1.0	5
61	Controlled reperfusion is a rose by any other name. Journal of Thoracic and Cardiovascular Surgery, 2015, 150, 1649-1650.	0.4	4
62	Pre-clinical Experience with a Multi-Chordal Patch for Mitral Valve Repair. Journal of Cardiovascular Translational Research, 2016, 9, 127-134.	1.1	4
63	Whole Blood Cardioplegia: Do We Still Need to Dilute?. Journal of Extra-Corporeal Technology, 2016, 48, P9-P14.	0.2	4
64	Editorial Comment: Myocardial protection with postconditioning in cardiac surgery: the importance of the model. European Journal of Cardio-thoracic Surgery, 2012, 42, 539-541.	0.6	1
65	Lethal Myocardial Reperfusion Injury. , 2012, , 51-85.		1
66	Invited Commentary. Annals of Thoracic Surgery, 2009, 87, 1213.	0.7	0
67	Invited Commentary. Annals of Thoracic Surgery, 2011, 92, 1732-1733.	0.7	Ο
68	Do we see ourselves in the rat?. Journal of Thoracic and Cardiovascular Surgery, 2017, 154, 1740-1741.	0.4	0
69	Commentary: No one drug does only one thing in only one setting. Journal of Thoracic and Cardiovascular Surgery, 2019, 158, 299-300.	0.4	Ο
70	Commentary: Methods are the investigator's lens. JTCVS Techniques, 2020, 1, 46-47.	0.2	0
71	Commentary: Follow where the data take you. Journal of Thoracic and Cardiovascular Surgery, 2022, 163, e42-e43.	0.4	0
72	PAR1 inhibition does not enhance the cardioprotective effect of postconditioning. FASEB Journal, 2010, 24, .	0.2	0