
Lena Höglund-Isaksson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1203806/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Global Methane Budget 2000–2017. Earth System Science Data, 2020, 12, 1561-1623.	9.9	1,199
2	Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security. Science, 2012, 335, 183-189.	12.6	1,107
3	The global methane budget 2000–2012. Earth System Science Data, 2016, 8, 697-751.	9.9	824
4	Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy applications. Environmental Modelling and Software, 2011, 26, 1489-1501.	4.5	578
5	Scenarios of global anthropogenic emissions of air pollutants and methane until 2030. Atmospheric Environment, 2007, 41, 8486-8499.	4.1	206
6	Global anthropogenic methane emissions 2005–2030: technical mitigation potentials and costs. Atmospheric Chemistry and Physics, 2012, 12, 9079-9096.	4.9	103
7	Technical potentials and costs for reducing global anthropogenic methane emissions in the 2050 timeframe –results from the GAINS model. Environmental Research Communications, 2020, 2, 025004.	2.3	96
8	Variability and quasi-decadal changes in the methane budget over the period 2000–2012. Atmospheric Chemistry and Physics, 2017, 17, 11135-11161.	4.9	85
9	The public health implications of the Paris Agreement: a modelling study. Lancet Planetary Health, The, 2021, 5, e74-e83.	11.4	85
10	Refunded emission payments theory, distribution of costs, and Swedish experience of NOx abatement. Ecological Economics, 2006, 57, 93-106.	5.7	81
11	Technical opportunities to reduce global anthropogenic emissions of nitrous oxide. Environmental Research Letters, 2018, 13, 014011.	5.2	74
12	Reducing global air pollution: the scope for further policy interventions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190331.	3.4	70
13	Global emissions of fluorinated greenhouse gases 2005–2050 with abatement potentials and costs. Atmospheric Chemistry and Physics, 2017, 17, 2795-2816.	4.9	60
14	Discrepancy between simulated and observed ethane and propane levels explained by underestimated fossil emissions. Nature Geoscience, 2018, 11, 178-184.	12.9	56
15	Cost estimates of the Kigali Amendment to phase-down hydrofluorocarbons. Environmental Science and Policy, 2017, 75, 138-147.	4.9	52
16	Bottom-up simulations of methane and ethane emissions from global oil and gas systems 1980 to 2012. Environmental Research Letters, 2017, 12, 024007.	5.2	50
17	Air quality–carbon–water synergies and trade-offs in China's natural gas industry. Nature Sustainability, 2018, 1, 505-511.	23.7	49
18	EU low carbon roadmap 2050: Potentials and costs for mitigation ofÂnon-CO2 greenhouse gas emissions. Energy Strategy Reviews, 2012, 1, 97-108.	7.3	47

Lena Höglund-Isaksson

#	Article	IF	CITATIONS
19	Abatement costs in response to the Swedish charge on nitrogen oxide emissions. Journal of Environmental Economics and Management, 2005, 50, 102-120.	4.7	43
20	Long-term marginal abatement cost curves of non-CO2 greenhouse gases. Environmental Science and Policy, 2019, 99, 136-149.	4.9	40
21	Sectoral marginal abatement cost curves: implications for mitigation pledges and air pollution co-benefits for Annex I countries. Sustainability Science, 2012, 7, 169-184.	4.9	34
22	European anthropogenic AFOLU greenhouse gas emissions: a review and benchmark data. Earth System Science Data, 2020, 12, 961-1001.	9.9	31
23	Electricity savings and greenhouse gas emission reductions from global phase-down of hydrofluorocarbons. Atmospheric Chemistry and Physics, 2020, 20, 11305-11327.	4.9	26
24	Tracing the climate signal: mitigation of anthropogenic methane emissions can outweigh a large Arctic natural emission increase. Scientific Reports, 2019, 9, 1146.	3.3	22
25	The Contribution of Non-CO2 Greenhouse Gas Mitigation to Achieving Long-Term Temperature Goals. Energies, 2017, 10, 602.	3.1	21
26	Anthropogenic emission is the main contributor to the rise of atmospheric methane during 1993–2017. National Science Review, 2022, 9, nwab200.	9.5	20
27	Achieving Paris climate goals calls for increasing ambition of the Kigali Amendment. Nature Climate Change, 2022, 12, 339-342.	18.8	20
28	Carbon in global waste and wastewater flows – its potential as energy source under alternative future waste management regimes. Advances in Geosciences, 0, 45, 105-113.	12.0	18
29	The consolidated European synthesis of CH ₄ and N ₂ O emissions for the European Union and United Kingdom: 1990–2017. Earth System Science Data, 2021, 13, 2307-2362.	9.9	16
30	Co-benefits of Energy-Efficient Air Conditioners in the Residential Building Sector of China. Environmental Science & Technology, 2020, 54, 13217-13227.	10.0	14
31	Trifluoroacetic acid deposition from emissions of HFO-1234yf in India, China, and the Middle East. Atmospheric Chemistry and Physics, 2021, 21, 14833-14849.	4.9	12
32	Emission mitigation potentials and costs for non-CO2greenhouse gases in Annex-I countries according to the GAINS model. Journal of Integrative Environmental Sciences, 2010, 7, 235-243.	2.5	9
33	Sustainable wastewater management in Indonesia's fish processing industry: Bringing governance into scenario analysis. Journal of Environmental Management, 2020, 275, 111241.	7.8	8
34	Data for long-term marginal abatement cost curves of non-CO2 greenhouse gases. Data in Brief, 2019, 25, 104334.	1.0	6
35	How much multilateralism do we need? Effectiveness of unilateral agricultural mitigation efforts in the global context. Environmental Research Letters, 2021, 16, 104038.	5.2	4

36 Mitigation Efforts Calculator (MEC). , 2010, , .