
## Zhiyun Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1203644/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                       | IF        | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| 1  | New insight into mechanochromic property of one N,N′-disubstituted-dihydrodibenzo[a'c]phenazine<br>derivative. Dyes and Pigments, 2022, 199, 110096.                                                                          | 2.0       | 1         |
| 2  | Transparent–Flexible–Moldable Low-Temperature Thermometer Constructed by Harnessing<br>Vibration-Induced Emission of Dihydrophenazine in Polydimethylsiloxane. ACS Applied Polymer<br>Materials, 2022, 4, 1636-1642.          | 2.0       | 8         |
| 3  | Interplay of Steric Effects and Aromaticity Reversals to Expand the Structural/Electronic Responses of Dihydrophenazines. Journal of the American Chemical Society, 2022, 144, 4883-4896.                                     | 6.6       | 17        |
| 4  | Photoconductance from the Bent-to-Planar Photocycle between Ground and Excited States in<br>Single-Molecule Junctions. Journal of the American Chemical Society, 2022, 144, 10042-10052.                                      | 6.6       | 18        |
| 5  | Extending the Stokes Shifts of Donor–Acceptor Fluorophores by Regulating the Donor<br>Configuration for <i>In Vivo</i> Three-Photon Fluorescence Imaging. Chemistry of Materials, 2022, 34,<br>5999-6008.                     | 3.2       | 16        |
| 6  | Spatial Confinements Control the Multicolor Solid Fluorescence Based on the Dihydrophenazine Derivative. , 2022, 4, 1462-1467.                                                                                                |           | 2         |
| 7  | Temperature-responsive molecular liquids based on dihydrophenazines for dynamic<br>multicolor-fluorescent anti-counterfeiting and encryption. Materials Chemistry Frontiers, 2021, 5,<br>2294-2302.                           | 3.2       | 22        |
| 8  | Aggregation-induced emission fluorophores based on strong electron-acceptor<br>2,2′-(anthracene-9,10-diylidene) dimalononitrile for biological imaging in the NIR-II window. Chemical<br>Communications, 2021, 57, 3099-3102. | 2.2       | 14        |
| 9  | Through-Space Exciton Delocalization in Segregated HJ-Crystalline Molecular Aggregates. Journal of Physical Chemistry A, 2021, 125, 943-953.                                                                                  | 1.1       | 7         |
| 10 | Simultaneous Two-Color Visualization of Lipid Droplets and Endoplasmic Reticulum and Their<br>Interplay by Single Fluorescent Probes in Lambda Mode. Journal of the American Chemical Society,<br>2021, 143, 3169-3179.       | 6.6       | 154       |
| 11 | Donor-conformation-dependent energy transfer for dual-color fluorescent probe with high-resolution imaging. Science China Chemistry, 2021, 64, 1310-1315.                                                                     | 4.2       | 6         |
| 12 | Development of reaction-free and mitochondrion-immobilized fluorescent probe for monitoring pH change. Sensors and Actuators B: Chemical, 2021, 341, 129962.                                                                  | 4.0       | 17        |
| 13 | Combination of Two Colorless Fluorophores for Full-Color Red-Green-Blue Luminescence. ACS<br>Applied Materials & Interfaces, 2021, 13, 38629-38636.                                                                           | 4.0       | 9         |
| 14 | A Smallâ€Molecule Diketopyrrolopyrroleâ€Based Dye for in vivo NIRâ€IIa Fluorescence Bioimaging. Chemistry<br>- A European Journal, 2021, 27, 14240-14249.                                                                     | 1.7       | 11        |
| 15 | Vibrationâ€Induced Emission (VIE) of <i>N,N</i> ′â€Disubstitutedâ€Dihydribenzo[ <i>a</i> , <i>c</i> ]phenazines<br>Fundamental Understanding and Emerging Applications. Advanced Functional Materials, 2020, 30,<br>1902803.  | 5:<br>7.8 | 52        |
| 16 | Smart molecular butterfly: an ultra-sensitive and range-tunable ratiometric thermometer based on dihydrophenazines. Materials Horizons, 2020, 7, 615-623.                                                                     | 6.4       | 37        |
| 17 | Supramolecular Assembly-Driven Color-Tuning and White-Light Emission Based on<br>Crown-Ether-Functionalized Dihydrophenazine. ACS Applied Materials & Interfaces, 2020, 12,<br>10875-10882.                                   | 4.0       | 26        |
| 18 | Diversified Excitedâ€State Relaxation Pathways of Donor–Linker–Acceptor Dyads Controlled by a<br>Bentâ€ŧoâ€Planar Motion of the Donor. Angewandte Chemie, 2020, 132, 18770-18777.                                             | 1.6       | 2         |

ZHIYUN ZHANG

| #  | Article                                                                                                                                                                                                                                                           | IF                | CITATIONS                  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------|
| 19 | Fluorescence Probes Exhibit Photoinduced Structural Planarization: Sensing In Vitro and In Vivo<br>Microscopic Dynamics of Viscosity Free from Polarity Interference. ACS Chemical Biology, 2020, 15,<br>1862-1873.                                               | 1.6               | 28                         |
| 20 | Insights into energy transfer pathways between the exciplex host and fluorescent guest: attaining<br>highly efficient 710 nm electroluminescence. Journal of Materials Chemistry C, 2020, 8, 5704-5714.                                                           | 2.7               | 15                         |
| 21 | Diversified Excited‧tate Relaxation Pathways of Donor–Linker–Acceptor Dyads Controlled by a<br>Bentâ€ŧoâ€Planar Motion of the Donor. Angewandte Chemie - International Edition, 2020, 59, 18611-18618.                                                            | 7.2               | 20                         |
| 22 | Modular synthesis of (C-10 to) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 632 Td (C-13)-substituted-9,14-diaryl-9,14-<br>Buchwald–Hartwig amination and C–H amination strategy. Chemical Communications, 2020, 56, 2260-2263.                                           | dihydrodil<br>2.2 | penzo[ <i>a&lt; <br/>7</i> |
| 23 | A novel colorimetric and fluorometric probe for the detection of CNâ^' with high selectivity in aqueous media. Dyes and Pigments, 2020, 176, 108224.                                                                                                              | 2.0               | 24                         |
| 24 | The endeavor of vibration-induced emission (VIE) for dynamic emissions. Chemical Science, 2020, 11, 7525-7537.                                                                                                                                                    | 3.7               | 56                         |
| 25 | Molecular Cursor Caliper: A Fluorescent Sensor for Dicarboxylate Dianions. Journal of the American<br>Chemical Society, 2019, 141, 14798-14806.                                                                                                                   | 6.6               | 90                         |
| 26 | Measuring the Microphase Separation Scale of Polyurethanes with a Vibration-Induced Emission-Based<br>Ratiometric "Fluorescent Ruler― ACS Applied Materials & Interfaces, 2019, 11, 39351-39358.                                                                  | 4.0               | 27                         |
| 27 | Mechanochromism induced through the interplay between excimer reaction and excited state intramolecular proton transfer. Communications Chemistry, 2019, 2, .                                                                                                     | 2.0               | 28                         |
| 28 | Ratiometric Indicator Based on Vibration-Induced Emission for in Situ and Real-Time Monitoring of Gelation Processes. ACS Applied Materials & Interfaces, 2018, 10, 20205-20212.                                                                                  | 4.0               | 21                         |
| 29 | Tuning the Conformation and Color of Conjugated Polyheterocyclic Skeletons by Installing<br><i>ortho</i> â€Methyl Groups. Angewandte Chemie, 2018, 130, 10028-10032.                                                                                              | 1.6               | 17                         |
| 30 | Tuning the Conformation and Color of Conjugated Polyheterocyclic Skeletons by Installing<br><i>ortho</i> â€Methyl Groups. Angewandte Chemie - International Edition, 2018, 57, 9880-9884.                                                                         | 7.2               | 77                         |
| 31 | Snapshotting the Excited-State Planarization of Chemically Locked <i>N</i> , <i>N</i> ′-Disubstituted<br>Dihydrodibenzo[ <i>a</i> , <i>c</i> ]phenazines. Journal of the American Chemical Society, 2017, 139,<br>1636-1644.                                      | 6.6               | 124                        |
| 32 | The Quest of Excitedâ€State Intramolecular Proton Transfer via Eightâ€Membered Ring Ï€â€Conjugated<br>Hydrogen Bonding System. Chemistry - an Asian Journal, 2017, 12, 3010-3015.                                                                                 | 1.7               | 7                          |
| 33 | Phenazineâ€Based Ratiometric Hg <sup>2+</sup> Probes with Wellâ€Resolved Dual Emissions: A New Sensing Mechanism by Vibrationâ€Induced Emission (VIE). Small, 2016, 12, 6542-6546.                                                                                | 5.2               | 55                         |
| 34 | Control of the Reversibility of Excited-State Intramolecular Proton Transfer (ESIPT) Reaction:<br>Host-Polarity Tuning White Organic Light Emitting Diode on a New Thiazolo[5,4- <i>d</i> ]thiazole ESIPT<br>System. Chemistry of Materials, 2016, 28, 8815-8824. | 3.2               | 171                        |
| 35 | Cu-catalyzed C–H amination/Ullmann N-arylation domino reaction: a straightforward synthesis of<br>9,14-diaryl-9,14-dihydrodibenzo[a,c]phenazine. Chemical Communications, 2016, 52, 5459-5462.                                                                    | 2.2               | 33                         |
| 36 | Sequential oligodiacetylene formation for progressive luminescent color conversion via co-micellar strategy. Chemical Science, 2016, 7, 2058-2065.                                                                                                                | 3.7               | 34                         |

ZHIYUN ZHANG

| #  | Article                                                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Highly sensitive detection of low-level water content in organic solvents and cyanide in aqueous media using novel solvatochromic AIEE fluorophores. RSC Advances, 2015, 5, 12191-12201.                                                                                                                 | 1.7  | 78        |
| 38 | Excited-State Conformational/Electronic Responses of Saddle-Shaped<br><i>N</i> , <i>N</i> ′-Disubstituted-Dihydrodibenzo[ <i>a</i> , <i>c</i> ]phenazines: Wide-Tuning Emission<br>from Red to Deep Blue and White Light Combination. Journal of the American Chemical Society, 2015,<br>137, 8509-8520. | 6.6  | 264       |
| 39 | A silole copolymer containing a ladder-type heptacylic arene and naphthobisoxadiazole moieties for<br>highly efficient polymer solar cells. Energy and Environmental Science, 2015, 8, 552-557.                                                                                                          | 15.6 | 61        |
| 40 | New six- and seven-membered ring pyrrole–pyridine hydrogen bond systems undergoing excited-state intramolecular proton transfer. Chemical Communications, 2014, 50, 15026-15029.                                                                                                                         | 2.2  | 52        |
| 41 | Highly sensitive determination of low-level water content in organic solvents using novel solvatochromic dyes based on thioxanthone. Chemical Communications, 2013, 49, 7319.                                                                                                                            | 2.2  | 107       |
| 42 | Colorâ€Tunable Solidâ€State Emission of 2,2′â€Biindenylâ€Based Fluorophores. Angewandte Chemie -<br>International Edition, 2011, 50, 11654-11657.                                                                                                                                                        | 7.2  | 254       |
| 43 | Vibratile Dihydrophenazines with Controllable Luminescence Enabled by Precise Regulation of<br>Ï€-Conjugated Wings. CCS Chemistry, 0, , 2239-2248.                                                                                                                                                       | 4.6  | 21        |