Yunkou Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12033956/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PET/CT imaging of CSF1R in a mouse model of tuberculosis. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 4088-4096.	6.4	1
2	Amino Acidâ€Derived Sensors for Specific Zn ²⁺ Detection Using Hyperpolarized ¹³ C Magnetic Resonance Spectroscopy. Chemistry - A European Journal, 2019, 25, 11842-11846.	3.3	8
3	Radiosynthesis and validation of [5â€cyanoâ€ <i>N</i> â€(4â€(4â€{ ¹¹ C]methylpiperazinâ€1â€yl)â€2â€(piperidinâ€1â€yl)phenyl) fur ([¹¹ C]CPPC), a PET radiotracer for imaging CSF1R, a microgliaâ€specific marker. Journal of Labelled Compounds and Radiopharmaceuticals. 2019. 62. 903-908.	ranâ€2â€c 1.0	arboxamide 10
4	PET imaging of microglia by targeting macrophage colony-stimulating factor 1 receptor (CSF1R). Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1686-1691.	7.1	140
5	Imaging Extracellular Lactate In Vitro and In Vivo Using CEST MRI and a Paramagnetic Shift Reagent. Chemistry - A European Journal, 2017, 23, 1752-1756.	3.3	25
6	Lanthanideâ€Based <i>T_{2ex}</i> and CEST Complexes Provide Insights into the Design of pH Sensitive MRI Agents. Angewandte Chemie - International Edition, 2017, 56, 16626-16630.	13.8	20
7	Lanthanideâ€Based <i>T_{2ex}</i> and CEST Complexes Provide Insights into the Design of pH Sensitive MRI Agents. Angewandte Chemie, 2017, 129, 16853-16857.	2.0	2
8	Chapter 11 ParaCEST Agents: Design, Discovery, and Implementation. , 2017, , 219-256.		0
9	Breaking the Barrier to Slow Water Exchange Rates for Optimal Magnetic Resonance Detection of paraCEST Agents. Inorganic Chemistry, 2016, 55, 3007-3014.	4.0	28
10	pH imaging of mouse kidneys in vivo using a frequencyâ€dependent paraCEST agent. Magnetic Resonance in Medicine, 2016, 75, 2432-2441.	3.0	54
11	A pHâ€Responsive MRI Agent that Can Be Activated Beyond the Tissue Magnetization Transfer Window. Angewandte Chemie - International Edition, 2015, 54, 8662-8664.	13.8	30
12	[⁶⁸ Ga]â€HPâ€ĐO3Aâ€nitroimidazole: a promising agent for PET detection of tumor hypoxia. Contrast Media and Molecular Imaging, 2015, 10, 465-472.	0.8	17
13	Amplifying the Sensitivity of Zinc(II) Responsive MRI Contrast Agents by Altering Water Exchange Rates. Journal of the American Chemical Society, 2015, 137, 14173-14179.	13.7	67
14	The importance of water exchange rates in the design of responsive agents for MRI. Current Opinion in Chemical Biology, 2013, 17, 167-174.	6.1	95
15	Advantages of paramagnetic chemical exchange saturation transfer (CEST) complexes having slow to intermediate water exchange properties as responsive MRI agents. NMR in Biomedicine, 2013, 26, 829-838.	2.8	33
16	A europium(iii)-based PARACEST agent for sensing singlet oxygen by MRI. Dalton Transactions, 2013, 42, 8066.	3.3	35
17	The <scp>pH</scp> sensitivity of –NH exchange in <scp>LnDOTA</scp> –tetraamide complexes varies with amide substituent. Contrast Media and Molecular Imaging, 2011, 6, 459-464.	0.8	18
18	Advantages of macromolecular to nanosized chemical-exchange saturation transfer agents for MRI applications. Future Medicinal Chemistry, 2010, 2, 351-366.	2.3	24

Yunkou Wu

#	Article	IF	CITATIONS
19	A Responsive Europium(III) Chelate That Provides a Direct Readout of pH by MRI. Journal of the American Chemical Society, 2010, 132, 14002-14003.	13.7	106
20	Multifunctional Polymeric Scaffolds for Enhancement of PARACEST Contrast Sensitivity and Performance: Effects of Random Copolymer Variations. Macromolecules, 2010, 43, 6616-6624.	4.8	15
21	The Population of SAP and TSAP Isomers in Cyclen-Based Lanthanide(III) Chelates Is Substantially Affected by Solvent. Inorganic Chemistry, 2010, 49, 8662-8664.	4.0	34
22	Polymeric PARACEST MRI contrast agents as potential reporters for gene therapy. Organic and Biomolecular Chemistry, 2010, 8, 5333.	2.8	20
23	Polymeric PARACEST Agents for Enhancing MRI Contrast Sensitivity. Journal of the American Chemical Society, 2008, 130, 13854-13855.	13.7	69
24	A ratiometric fluorescent sensor for phosphates: Zn2+-enhanced ICT and ligand competition. Organic and Biomolecular Chemistry, 2007, 5, 226-228.	2.8	104
25	Simple Bisthiocarbonohydrazones as Sensitive, Selective, Colorimetric, and Switch-On Fluorescent Chemosensors for Fluoride Anions. Chemistry - A European Journal, 2007, 13, 2880-2892.	3.3	152
26	Boron dipyrromethene fluorophore based fluorescence sensor for the selective imaging of Zn(ii) in living cells. Organic and Biomolecular Chemistry, 2005, 3, 1387.	2.8	204
27	Colorimetric and Ratiometric Fluorescence Sensing of Fluoride:Â Tuning Selectivity in Proton Transfer. Journal of Organic Chemistry, 2005, 70, 10524-10531.	3.2	443
28	A Naphthalimide Fluorescent Sensor for Zn2+Based on Photo-induced Electron Transfer. Chemistry Letters, 2004, 33, 1392-1393.	1.3	31