Asezai S Sara

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1203294/asezai-s-sarac-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

240
papers

240
citations

31
h-index

31
g-index

251
ext. papers

4,258
ext. citations

36
avg, IF

L-index

#	Paper	IF	Citations
240	Multilayer crystal-amorphous Pd-based nanosheets on Si/SiO2 with interface-controlled ion transport for efficient hydrogen storage. <i>International Journal of Hydrogen Energy</i> , 2022 , 47, 6777-6788	₃ 6.7	O
239	Surface electrocoating of single carbon fibre with electroactive 3,4-ethylenedioxythiophene/1-p(tolylsulphonyl) pyrrole copolymer: effect of dielectric constant of solvent. <i>Bulletin of Materials Science</i> , 2021 , 44, 1	1.7	1
238	Transition metal-based high entropy alloy microfiber electrodes: Corrosion behavior and hydrogen activity. <i>Corrosion Science</i> , 2021 , 193, 109880	6.8	O
237	Origin of Electrocatalytic Activity in Amorphous Nickel-Metalloid Electrodeposits. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 23689-23701	9.5	1
236	Silk-fibroin-containing nanofibers for topical sertaconazole delivery: preparation, characterization, and antifungal activity. <i>International Journal of Polymeric Materials and Polymeric Biomaterials</i> , 2021 , 70, 605-622	3	2
235	A green approach to fabricate binder-free S-doped graphene oxide electrodes for vanadium redox battery. <i>International Journal of Energy Research</i> , 2021 , 45, 2126-2137	4.5	9
234	Thermomechanical and structural characterization of polybutadiene/poly(ethylene oxide)/ CNT stretchable electrospun fibrous membranes. <i>Polymers for Advanced Technologies</i> , 2021 , 32, 248-261	3.2	2
233	Electrospun nanofibers of poly (acrylonitrile-co-itaconic acid)/silver and polyacrylonitrile/silver: In situ preparation, characterization, and antimicrobial activity. <i>Journal of Industrial Textiles</i> , 2021 , 50, 159	94 ⁻¹ 162	4 ²
232	Carbon Nanomaterials 2021 , 784-809		
231	Electrospun polyacrylonitrile/2-(acryloyloxy)ethyl ferrocenecarboxylate polymer blend nanofibers. <i>Molecular Systems Design and Engineering</i> , 2021 , 6, 476-492	4.6	0
230	Functionalized highly electron-rich redox-active electropolymerized 3,4-propylenedioxythiophenes as precursors and targets for bioelectronics and supercapacitors. <i>Molecular Systems Design and Engineering</i> , 2021 , 6, 214-233	4.6	3
229	Nanoporous PdtuBi Amorphous Thin Films for Electrochemical Hydrogen Storage and Sensing. <i>ACS Applied Energy Materials</i> , 2021 , 4, 2672-2680	6.1	2
228	Effective Methanol Oxidation with Platinum Nanoparticles-Decorated Poly(2-bromomethyl-2-methyl-3,4-propylenedioxythiophene)-Coated Glassy Carbon Electrode. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 086503	3.9	O
227	Enhancement of Interfacial Hydrogen Interactions with Nanoporous Gold-Containing Metallic Glass. <i>ACS Applied Materials & District Mate</i>	9.5	2
226	Porosity and thickness effect of Pdtusi metallic glasses on electrocatalytic hydrogen production and storage. <i>Materials and Design</i> , 2021 , 210, 110099	8.1	O
225	Silver sulfadiazine Loaded Poly (ECaprolactone)/Poly (Ethylene Oxide) Composite Nanofibers for Topical Drug Delivery. <i>Nano</i> , 2020 , 15, 2050073	1.1	3
224	Thermal stabilization of poly(acrylonitrile-co-itaconic acid) nanofibers as carbon nanofiber precursor. <i>Polymer Degradation and Stability</i> , 2020 , 175, 109142	4.7	2

223	Oligoether Ester-Functionalized ProDOT Copolymers on Si/Monolayer Graphene as Capacitive Thin Film Electrodes. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 070543	3.9	6
222	Nonflammable pre-carbonized polyacrylonitrile nanofiber webs. SN Applied Sciences, 2020, 2, 1	1.8	
221	Hydrogen storage performance of the multi-principal-component CoFeMnTiVZr alloy in electrochemical and gas-solid reactions <i>RSC Advances</i> , 2020 , 10, 24613-24623	3.7	14
220	Metallic Glass Films with Nanostructured Periodic Density Fluctuations Supported on Si/SiO as an Efficient Hydrogen Sorber. <i>Chemistry - A European Journal</i> , 2020 , 26, 8244-8253	4.8	8
219	Effects of Polyvinylpyrrolidone and Ethyl Cellulose in Polyurethane Electrospun Nanofibers on Morphology and Drug Release Characteristics. <i>Turkish Journal of Pharmaceutical Sciences</i> , 2020 , 17, 638	-644	3
218	Nanocomposite structures of polypyrrole derivatives and poly (acrylonitrile-co-itaconic acid) produced by in situ polymerization as carbon nanofiber precursor. <i>Polymers for Advanced Technologies</i> , 2020 , 31, 536-543	3.2	2
217	Electrocatalytic Behavior of Hydrogenated Pd-Metallic Glass Nanofilms: Butler-Volmer, Tafel, and Impedance Analyses. <i>Electrocatalysis</i> , 2020 , 11, 94-109	2.7	17
216	Voriconazole incorporated nanofiber formulations for topical application: preparation, characterization and antifungal activity studies against species. <i>Pharmaceutical Development and Technology</i> , 2020 , 25, 440-453	3.4	10
215	A multifunctional long-term release system for treatment of hypothyroidism. <i>Journal of Biomedical Materials Research - Part A</i> , 2020 , 108, 760-759	5.4	3
214	Thermally Treated Graphene Oxide/Polyacrylonitrile Based Electrospun Carbon Nanofiber Precursor. <i>Journal of Nanoscience and Nanotechnology</i> , 2020 , 20, 3448-3459	1.3	7
213	Surface-governed electrochemical hydrogenation in FeNi-based metallic glass. <i>Journal of Power Sources</i> , 2020 , 475, 228700	8.9	4
212	Effective electrocatalytic methanol oxidation of Pd-based metallic glass nanofilms. <i>Nanoscale</i> , 2020 , 12, 22586-22595	7.7	10
211	A Novel Dioxythiophene Based Conducting Polymer as Electrode Material for Supercapacitor Application. <i>International Journal of Electrochemical Science</i> , 2019 , 9504-9519	2.2	6
210	A Ternary PEDOT-TiO2-Reduced Graphene Oxide Nanocomposite for Supercapacitor Applications. <i>Macromolecular Research</i> , 2019 , 27, 867-875	1.9	5
209	Ultrahigh hydrogen-sorbing palladium metallic-glass nanostructures. <i>Materials Horizons</i> , 2019 , 6, 1481-1	4874	11
208	A Novel Carbon Nanofiber Precursor: Poly(acrylonitrile-co-vinylacetate-co-itaconic acid) Terpolymer. <i>Journal of Nanoscience and Nanotechnology</i> , 2019 , 19, 3844-3853	1.3	4
207	Electrospun polyacrylonitrilelauric acid composite nanofiber webs as a thermal energy storage material. <i>Journal of Engineered Fibers and Fabrics</i> , 2019 , 14, 155892501882489	0.9	2
206	Development of a flame retardant chemical for finishing of cotton, polyester, and CO/PET blends. Journal of Industrial Textiles, 2019, 49, 141-161	1.6	15

205	Carbon Nanomaterials. Advances in Chemical and Materials Engineering Book Series, 2019, 1-33	0.2	2
204	Polypyrrole/barium titanate/poly(acrylonitrile-co-methylacrylate)deposited cotton fabrics: Electromagnetic shielding. <i>Journal of Industrial Textiles</i> , 2018 , 47, 656-673	1.6	7
203	Oxidation of polyacrylonitrile nanofiber webs as a precursor for carbon nanofiber: aligned and non-aligned nanofibers. <i>Polymer Bulletin</i> , 2018 , 75, 485-499	2.4	25
202	Determination of Membrane Protein Fouling by UV Spectroscopy and Electrochemical Impedance Spectroscopy. <i>Polymer-Plastics Technology and Engineering</i> , 2018 , 57, 59-69		9
201	Fabrication and characterization of poly(butyl acrylate-co-methyl methacrylate)-polypyrrole nanofibers. <i>Polymer Bulletin</i> , 2018 , 75, 1607-1617	2.4	3
200	Impedimetric DNA biosensor based on polyurethane/poly(m-anthranilic acid) nanofibers. <i>Sensors and Actuators B: Chemical</i> , 2018 , 254, 719-726	8.5	22
199	Effects of carboxylated multi-walled carbon nanotubes having different outer diameters on hollow fiber ultrafiltration membrane fabrication and characterization by electrochemical impedance spectroscopy. <i>Polymer Bulletin</i> , 2018 , 75, 2431-2457	2.4	6
198	Electrospun carbon nanofiber web electrode: Supercapacitor behavior in various electrolytes. <i>Journal of Applied Polymer Science</i> , 2018 , 135, 45723	2.9	20
197	Facile synthesis of poly[1-p (tolylsulfonyl) pyrrole] via Ce (IV)-pyrrole redox initiating system and polyacrylonitrile blended nanofibers. <i>Polymers for Advanced Technologies</i> , 2018 , 29, 2440-2448	3.2	4
196	Morphological and Electrochemical Impedance Spectroscopy (EIS) Study of poly(3,4 ethylenedioxythiophene)-coated poly(acrylonitrile-co-styrene) nanoparticles. <i>International Journal of Electrochemical Science</i> , 2018 , 433-451	2.2	2
195	Preparation and Electrochemical Performances of Graphene Oxide/PEDOT and Reduced Graphene Oxide/PEDOT Nanofibers and Nanocomposites. <i>Fibers and Polymers</i> , 2018 , 19, 2178-2187	2	9
194	Electrosorption of Hydrogen in Pd-Based Metallic Glass Nanofilms. <i>ACS Applied Energy Materials</i> , 2018 , 1, 2630-2646	6.1	19
193	RGD functionalized poly(Eaprolactone)/poly(m-anthranilic acid) electrospun nanofibers as high-performing scaffolds for bone tissue engineering RGD functionalized PCL/P3ANA nanofibers. <i>International Journal of Polymeric Materials and Polymeric Biomaterials</i> , 2017 , 66, 139-148	3	22
192	Polyurethane/hydroxypropyl cellulose electrospun nanofiber mats as potential transdermal drug delivery system: characterization studies and in vitro assays. <i>Artificial Cells, Nanomedicine and Biotechnology</i> , 2017 , 45, 655-664	6.1	56
191	Superhydrophobic fluorinated acylonitrile coatings via electrospraying. <i>Progress in Organic Coatings</i> , 2017 , 105, 342-352	4.8	12
190	Au/PANA/PVAc and Au/P(ANA-co-CNTA)/PVAc electrospun nanofibers as tyrosinase immobilization supports. <i>International Journal of Polymeric Materials and Polymeric Biomaterials</i> , 2017 , 66, 658-668	3	1
189	Oxidative stabilization of polyacrylonitrile nanofibers and carbon nanofibers containing graphene oxide (GO): a spectroscopic and electrochemical study. <i>Beilstein Journal of Nanotechnology</i> , 2017 , 8, 16	51 <i>ह</i> ै-162	 28 ⁴¹
188	Gold nanoparticle/nickel oxide/poly(pyrrole-N-propionic acid) hybrid multilayer film: Electrochemical study and its application in biosensing. <i>EXPRESS Polymer Letters</i> , 2017 , 11, 449-466	3.4	11

(2016-2017)

187	Morphological effect of composite TiO2 nanorod-TiO2 nanoparticle/PEDOT:PSS electrodes on triiodide reduction. <i>EXPRESS Polymer Letters</i> , 2017 , 11, 106-116	3.4	3
186	Glucose oxidase immobilization onto Au/poly[anthranilic acid-co-3-carboxy-N-(2-thenylidene)aniline]/PVAc electrospun nanofibers. <i>Polymer Bulletin</i> , 2017 , 74, 1493-1517	2.4	3
185	Characterization of polyacrylonitrile, poly(acrylonitrile-co-vinyl acetate), and poly(acrylonitrile-co-itaconic acid) based activated carbon nanofibers. <i>Journal of Applied Polymer Science</i> , 2017 , 134,	2.9	36
184	Electrochemical and Morphological Analysis of Poly(3,4-alkylenedioxythiophene)-Modified TiO2 Nanorod Electrodes. <i>Journal of Nanoscience and Nanotechnology</i> , 2017 , 17, 5461-5468	1.3	2
183	Poly(acrylonitrile-co-itaconic acid)poly(3,4-ethylenedioxythiophene) and poly(3-methoxythiophene) nanoparticles and nanofibres. <i>Bulletin of Materials Science</i> , 2017 , 40, 957-969	9 ^{1.7}	7
182	FR Performance of New Fire-off on PET/CO blend fabrics. <i>IOP Conference Series: Materials Science and Engineering</i> , 2017 , 254, 082003	0.4	
181	Electropolymerization of 9-Carbazole Acetic Acid in Room Temperature Ionic Liquid-Acetonitrile Mixture: Morphology, Capacitance, and MottBchottky Analysis. <i>Journal of the Electrochemical Society</i> , 2016 , 163, G107-G114	3.9	7
180	Synthesis, Characterization and Electrochemical Polymerization of a Comonomer Bearing Thiophene and Imidazole: The Comparison of Impedance Behavior on Different Surfaces. <i>ECS Journal of Solid State Science and Technology</i> , 2016 , 5, P211-P217	2	
179	In-situ preparation and characterization of pyrrole and tert-butyl 1-pyrrole-carboxylate on barium titanate/poly(acrylonitrile-co-methylacrylate) nanoparticles. <i>Reactive and Functional Polymers</i> , 2016 , 100, 1-11	4.6	3
178	(Au/PANA/PVAc) nanofibers as a novel composite matrix for albumin and streptavidin immobilization. <i>Materials Science and Engineering C</i> , 2016 , 60, 260-275	8.3	6
177	Electrochemical Impedance Study on Poly(Alkylenedioxy)Thiophene Nanostructures: Solvent and Potential Effect. <i>Nanoscience and Technology</i> , 2016 , 461-476	0.6	O
176	The effect of deposition on electrochemical impedance properties of TiO2/FTO photoanodes. <i>Journal of Electroceramics</i> , 2016 , 36, 102-111	1.5	5
175	Covalent streptavidin immobilization on electrospun poly(m-anthranilic acid)/polycaprolactone nanofibers and cytocompatibility. <i>Journal of Bioactive and Compatible Polymers</i> , 2016 , 31, 291-303	2	O
174	Electrochemical impedance and spectroscopy study of the EDC/NHS activation of the carboxyl groups on poly(Etaprolactone)/poly(m-anthranilic acid) nanofibers. <i>EXPRESS Polymer Letters</i> , 2016 , 10, 96-110	3.4	25
173	Electrochemical Impedance Spectroscopic Study on Polypyrrole/Barium Titanate/Poly(acrylonitrile-co-methylacrylate) Nanoparticles. <i>Journal of the Electrochemical Society</i> , 2016 , 163, H205-H212	3.9	6
172	Synthesis and characterization of poly (acrylonitrile-co-acrylic acid) as precursor of carbon nanofibers. <i>Polymers for Advanced Technologies</i> , 2016 , 27, 1383-1388	3.2	24
171	Covalent Immobilization of Urease on Poly(Pyrrole-3-carboxylic Acid): Electrochemical Impedance and Mott Schottky Study. <i>Journal of the Electrochemical Society</i> , 2016 , 163, B435-B444	3.9	4
170	Enhanced osteogenesis on biofunctionalized poly(e-caprolactone)/poly(m-anthranilic acid) nanofibers. <i>Journal of Biomaterials Applications</i> , 2016 , 31, 743-754	2.9	6

169	Frequency and Temperature Dependence of Dielectric Behaviors for Conductive Acrylic Composites. <i>Advances in Polymer Technology</i> , 2016 , 35,	1.9	9
168	Synthesis and Characterization of Poly(Acrylonitrile-co-Vinylacetate)/Fe2O3@PEDOT Core-Shell Nanocapsules and Nanofibers. <i>International Journal of Polymeric Materials and Polymeric</i> <i>Biomaterials</i> , 2015 , 64, 597-609	3	6
167	Synthesis and electrochemical investigation of polyindole based fiber as sensor electrode by EIS method. <i>Fibers and Polymers</i> , 2015 , 16, 1468-1477	2	7
166	In situ spectroscopic and electrochemical impedance study of gold/poly (anthranilic acid) core/shell nanoparticles. <i>European Polymer Journal</i> , 2015 , 66, 502-512	5.2	9
165	BMP-2 immobilized PCL/P3ANA nanofibers for bone tissue engineering 2015 ,		2
164	Covalent Immobilization of Tyrosinase on Electrospun Polyacrylonitrile/Polyurethane/Poly(m-anthranilic acid) Nanofibers: An Electrochemical Impedance Study. <i>Polymer-Plastics Technology and Engineering</i> , 2015 , 54, 1494-1504		23
163	Electrochemical impedance spectroscopic study of single-stranded DNA-immobilized electroactive polypyrrole-coated electrospun poly(Eaprolactone) nanofibers. <i>Materials Express</i> , 2015 , 5, 269-279	1.3	25
162	A review: effect of conductive polymers on the conductivities of electrospun mats. <i>Textile Reseach Journal</i> , 2014 , 84, 1325-1342	1.7	45
161	Electrospun antibacterial nanofibrous polyvinylpyrrolidone/cetyltrimethylammonium bromide membranes for biomedical applications. <i>Journal of Bioactive and Compatible Polymers</i> , 2014 , 29, 382-39	7 ²	14
160	Electrochemical synthesis, characterization and capacitive properties of novel thiophene based conjugated polymer. <i>Reactive and Functional Polymers</i> , 2014 , 83, 107-112	4.6	9
159	An impedance-morphology study on poly(3-methylthiophene) coated electrode obtained in boron trifluoride diethyl etheratelicetonitrile. <i>Synthetic Metals</i> , 2014 , 195, 44-53	3.6	9
158	Incorporation of growth factor loaded microspheres into polymeric electrospun nanofibers for tissue engineering applications. <i>Journal of Biomedical Materials Research - Part A</i> , 2014 , 102, 1897-908	5.4	40
157	Nanofibers of Poly(Acrylonitrile-co-Methylacrylate)/Polypyrrole CoreBhell Nanoparticles. <i>Advanced Science, Engineering and Medicine</i> , 2014 , 6, 301-310	0.6	3
156	New Preparation Route of TiO2 Nanofibers by Electrospinning: Spectroscopic and Thermal Characterizations. <i>Science of Advanced Materials</i> , 2014 , 6, 2618-2624	2.3	10
155	<i>In Situ</i> Preparation of Core Shell-Polypyrrole /Poly (Acrylonitrile-Co-Vinyl Acetate) Nanoparticles and Their Nanofibers. <i>Soft Nanoscience Letters</i> , 2014 , 04, 42-49	0.3	3
154	Acrylonitrile/vinyl acetate copolymer nanofibers with different vinylacetate content. <i>Journal of Applied Polymer Science</i> , 2013 , 127, 3830-3838	2.9	11
153	Synthesis of urethane acrylate based electromagnetic interference shielding materials. <i>Journal of Applied Polymer Science</i> , 2013 , 127, 4957-4966	2.9	4
152	Electrochemical impedance study on nanofibers of poly(m-anthranilic acid)/polyacrylonitrile blends. <i>European Polymer Journal</i> , 2013 , 49, 2645-2653	5.2	24

(2011-2013)

151	Inhibition of pyrite corrosion and photocorrosion by MEKF-R modified carbazoles. <i>Progress in Organic Coatings</i> , 2013 , 76, 533-540	4.8	12
150	Polypyrrole/Poly(acrylonitrile-co-butyl acrylate) Composite. <i>Advances in Polymer Technology</i> , 2013 , 32, E784-E792	1.9	5
149	Transparent poly(methyl methacrylate-co-butyl acrylate) nanofibers. <i>Journal of Applied Polymer Science</i> , 2013 , 130, n/a-n/a	2.9	4
148	Electrochemical impedance characterization and potential dependence of poly[3,4-(2,2-dibutylpropylenedioxy)thiophene] nanostructures on single carbon fiber microelectrode. Synthetic Metals, 2012 , 162, 511-515	3.6	11
147	Superhydrophobic terpolymer nanofibers containing perfluoroethyl alkyl methacrylate by electrospinning. <i>Applied Surface Science</i> , 2012 , 258, 5815-5821	6.7	56
146	Preparation and characterization of electrospun polyurethanepolypyrrole nanofibers and films. <i>Journal of Applied Polymer Science</i> , 2012 , 125, 4100-4108	2.9	39
145	Impedance and morphology of hydroxy- and chloro-functionalized poly(3,4-propylenedioxythiophene) nanostructures. <i>Journal of Nanoscience and Nanotechnology</i> , 2012 , 12, 7869-78	1.3	13
144	Conducting Polymers and their Applications. Current Physical Chemistry, 2012, 2, 224-240	0.5	96
143	Synthesis of 2-(9H-carbazole-9-yl)ethyl methacrylate: Electrochemical impedance spectroscopic study of poly(2-(9H-carbazole-9-yl)ethyl methacrylate) on carbon fiber. <i>Journal of Applied Polymer Science</i> , 2011 , 121, 3475-3482	2.9	11
142	Electrochemical impedance of poly(9-tosyl-9H-carbazole-co-pyrrole) electrocoated carbon fiber. <i>Materials Chemistry and Physics</i> , 2011 , 127, 120-127	4.4	16
141	Synthesis and electropolymerization of 9-tosyl-9H-carbazole, electrochemical impedance spectroscopic study and circuit modelling. <i>Fibers and Polymers</i> , 2011 , 12, 8-14	2	22
140	Characterization of conductive poly(acrylonitrile-co-vinyl acetate) composites: Matrix polymerization of pyrrole derivatives. <i>Fibers and Polymers</i> , 2011 , 12, 151-158	2	10
139	Synthesis and characterization of electrically conductive composite films of polypyrrole/poly(acrylonitrile-co-styrene). <i>Fibers and Polymers</i> , 2011 , 12, 565-571	2	17
138	Dielectric, FTIR spectroscopic and atomic force microscopic studies on polypyrrole-poly(acrylonitrile-co-vinyl acetate) composites. <i>Polymer Composites</i> , 2011 , 32, 546-557	3	6
137	Mechanical and thermal properties of perfluoroalkyl ethyl methacrylatefhethyl methacrylate statistical copolymers synthesized in supercritical carbon dioxide. <i>Journal of Fluorine Chemistry</i> , 2011 , 132, 348-355	2.1	21
136	Electrochemical Impedance Spectroscopic Study of Polythiophenes on Carbon Materials. <i>Polymer-Plastics Technology and Engineering</i> , 2011 , 50, 1130-1148		20
135	Electrosynthesis of Poly(3-dodecyl thiophene) in Acetonitrile with Boron Trifluoride Diethyl Etherate: The Effect of the Electrolyte on Electrochemical Impedance and Morphology. <i>Journal of the Electrochemical Society</i> , 2011 , 159, D1-D8	3.9	8
134	Electrochemical synthesis of Poly[3, 4-Propylenedioxythiophene-co-N-Phenylsulfonyl Pyrrole]: Morphological, electrochemical and spectroscopic characterization. <i>EXPRESS Polymer Letters</i> , 2011 , 5, 493-505	3.4	13

133	Electrochemical Copolymerization of 3,4-Ethylenedioxythiophene and N-Phenylsulfonyl Pyrrole: Morphologic, Spectroscopic, Electrochemical Characterizations. <i>Journal of the Electrochemical Society</i> , 2010 , 157, P99	3.9	7
132	Nanofiber network of electropolymerized 3,4-(2-benzylpropylenedioxy)thiophene on single carbon fiber microelectrode. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 8043-53	1.3	6
131	Polymerization of pyrrole derivatives on polyacrylonitrile matrix, FTIRATR and dielectric spectroscopic characterization of composite thin films. <i>Synthetic Metals</i> , 2010 , 160, 1189-1196	3.6	51
130	Polypyrrole/polyacrylonitrile composite films: Dielectric, spectrophotometric and morphologic characterization. <i>Fibers and Polymers</i> , 2010 , 11, 843-850	2	13
129	Morphological and impedance studies on electropolymerized 3,4-(2,2-dibenzylpropylenedioxy)thiophene nanostructures on micron sized single carbon fiber. <i>Progress in Organic Coatings</i> , 2010 , 69, 527-533	4.8	13
128	Poly(3,4-alkylenedioxythiophene) Nanostructures. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1240, 1		
127	Electrochemical impedance spectroscopy of poly[carbazole-co-N-p-tolylsulfonyl pyrrole] on carbon fiber microelectrodes, equivalent circuits for modelling. <i>Progress in Organic Coatings</i> , 2009 , 65, 281-287	4.8	40
126	Conducting polymer coated carbon surfaces and biosensor applications. <i>Progress in Organic Coatings</i> , 2009 , 66, 337-358	4.8	113
125	Monomer concentration effect on electrochemically modified carbon fiber with poly[1-(4-methoxyphenyl)-1H-pyrrole] as microcapacitor electrode. <i>Advances in Polymer Technology</i> , 2009 , 28, 120-130	1.9	21
124	Electropolymerization of N-hydroxyethylcarbazole on carbon fiber microelectrodes. <i>Journal of Applied Polymer Science</i> , 2009 , 113, 136-142	2.9	6
123	Capacitive behavior of polycarbazole- and poly(N-vinylcarbazole)-coated carbon fiber microelectrodes in various solutions. <i>Journal of Applied Electrochemistry</i> , 2009 , 39, 2043-2048	2.6	35
122	Polycarbazole modified carbon fiber microelectrode: Surface characterization and dopamine sensor. <i>Fibers and Polymers</i> , 2009 , 10, 46-52	2	30
121	A novel EDOTBonylbithiazoleBDOT based comonomer as an active electrode material for supercapacitor applications. <i>Electrochimica Acta</i> , 2009 , 54, 6354-6360	6.7	35
120	Electropolymerization, characterization and corrosion performance of poly(N-ethylaniline) on copper. <i>Electrochimica Acta</i> , 2009 , 55, 104-112	6.7	58
119	Copolymers of N-vinylcarbazole with Acrylic Acid, Itaconic Acid, and N-isopropylacrylamide: Synthesis, Determination of Monomer Reactivity Ratios, and Electrochemical Properties. <i>International Journal of Polymer Analysis and Characterization</i> , 2009 , 14, 140-159	1.7	5
118	Effect of electrolyte on the electropolymerization of 2,2-dibutyl-3,4-propylenedioxythiophene on carbon fiber microelectrodes. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 2877-86	1.3	3
117	Electrochemical impedance study of polyaniline electrocoated porous carbon foam. <i>Progress in Organic Coatings</i> , 2008 , 62, 96-104	4.8	17
116	Electrochemical impedance spectroscopy of poly(N-methyl pyrrole) on carbon fiber microelectrodes and morphology. <i>Progress in Organic Coatings</i> , 2008 , 62, 331-335	4.8	23

115	A Study of the Electrochemical Behavior of Poly [N-Vinyl Carbazole] Formed on Carbon-Fiber Microelectrodes and Its Response to Dopamine. <i>IEEE Sensors Journal</i> , 2008 , 8, 1628-1639	4	38	
114	Potential dependence of electrochemical impedance of nanoscale modified carbon fibre surface. <i>Surface Engineering</i> , 2008 , 24, 358-365	2.6	7	
113	Electrochemical impedance spectroscopy and morphological analyses of pyrrole, phenylpyrrole and methoxyphenylpyrrole on carbon fiber microelectrodes. <i>Surface and Coatings Technology</i> , 2008 , 202, 3997-4005	4.4	52	
112	Carbon fiber microelectrodes electrocoated with polycarbazole and poly(carbazole-co-p-tolylsulfonyl pyrrole) films for the detection of dopamine in presence of ascorbic acid. <i>Mikrochimica Acta</i> , 2008 , 160, 247-251	5.8	61	
111	An experimental and quantum mechanical study on electrochemical properties of N-substituted pyrroles. <i>Computational and Theoretical Chemistry</i> , 2008 , 857, 95-104		9	
110	Synthesis and electrochemical polymerization of N-ethylcarbazole comonomer. <i>Journal of Applied Polymer Science</i> , 2007 , 103, 795-801	2.9	8	
109	Microcomposite electrochemical capacitor: Electrocoating of poly[N-(hydroxymethyl)carbazole] onto carbon fiber, surface morphology, spectroscopic surface characterization, electrochemical impedance spectroscopy. <i>Journal of Applied Polymer Science</i> , 2007 , 104, 238-246	2.9	17	
108	Block copolymers of N-vinyl carbazole and Edihydroxy polydimethylsiloxane. <i>Journal of Applied Polymer Science</i> , 2007 , 106, 3694-3702	2.9	10	
107	Synthesis and electrochemical characterization of bis(3,4-ethylene-dioxythiophene)-(4,4?-dinonyl-2,2?-bithiazole) comonomer. <i>Electrochimica Acta</i> , 2007 , 52, 2158-2165	6.7	21	
106	Synthesis and electrocoating of indole E hiophene comonomer on carbon fiber microelectrode, and surface topography by AFM. <i>European Polymer Journal</i> , 2007 , 43, 3392-3399	5.2	9	
105	Synthesis, electrochemical characterization and impedance studies on novel thiophene-nonylbithiazole-thiophene comonomer. <i>Journal of Electroanalytical Chemistry</i> , 2007 , 610, 113-121	4.1	30	
104	Electrochemical composite formation of thiophene and N-methylpyrrole polymers on carbon fiber microelectrodes: Morphology, characterization by surface spectroscopy, and electrochemical impedance spectroscopy. <i>Progress in Organic Coatings</i> , 2007 , 59, 28-36	4.8	17	
103	Electrochemically polymerized 2,2-dimethyl-3,4-propylenedioxythiophene on carbon fiber for microsupercapacitor. <i>Progress in Organic Coatings</i> , 2007 , 60, 281-286	4.8	43	
102	Characterization of Micrometer-Sized Thin Films of Electrocoated Carbazole with p-Tolylsulfonyl Pyrrole on Carbon Fiber Microelectrodes. <i>Journal of the Electrochemical Society</i> , 2007 , 154, D283	3.9	34	
101	Nanoscale surface morphology and monomer concentration dependence on impedance of electrocoated 2,2-dimethyl-3,4-propylene-dioxythiophene on carbon fiber microelectrode. <i>Journal of Nanoscience and Nanotechnology</i> , 2007 , 7, 3543-52	1.3	17	
100	Nanocharacterization of electrocoated polymers on carbon fibers. <i>Microelectronic Engineering</i> , 2006 , 83, 1534-1537	2.5	15	
99	Electrolyte and solvent effects of electrocoated polycarbazole thin films on carbon fiber microelectrodes. <i>Journal of Applied Electrochemistry</i> , 2006 , 36, 889-898	2.6	48	
98	Reflectance FTIR and SEM characterization of poly[N-vinylcarbazole-co-methylmethacrylate] electrografted carbon fiber surface: current density effect. <i>Journal of Materials Science</i> , 2006 , 41, 389-3	398 ³	5	

97	Electrochemical Copolymerization of Pyrrole and Methyl Ethyl Ketone Formaldehyde Resin. <i>International Journal of Polymeric Materials and Polymeric Biomaterials</i> , 2005 , 54, 1019-1030	3	5
96	FIB-SIMS investigation of carbazole-based polymer and copolymers electrocoated onto carbon fibers, and an AFM morphological study. <i>Surface and Coatings Technology</i> , 2005 , 194, 36-41	4.4	15
95	Electrocoating of carbon fibres: A route for interface control in carbon fibre reinforced poly methylmethacrylate?. <i>Composites Science and Technology</i> , 2005 , 65, 1564-1573	8.6	23
94	Characterisation of nanosize thin films of electrografted N-vinylcarbazole copolymers (P[NVCzdo-VBSA] and P[NVCzdo-3-MeTh]) onto carbon fibre. <i>Applied Surface Science</i> , 2005 , 243, 183-198	8 ^{6.7}	12
93	Comparative Study of Chemical and Electrochemical Copolymerization of N-Methylpyrrole with N-Ethylcarbazole Spectroscopic and Cyclic Voltammetric Analysis. <i>International Journal of Polymeric Materials and Polymeric Biomaterials</i> , 2005 , 54, 883-897	3	19
92	Electrochemical copolymerization of Carbazole, Ethylcarbazole and N-Vinylcarbazole with methyl ethyl ketone-formaldehyde resin. <i>International Journal of Polymeric Materials and Polymeric Biomaterials</i> , 2005 , 54, 161-172	3	4
91	Nanoscale characterization of carbazole-indole copolymers modified carbon fiber surfaces. <i>Journal of Nanoscience and Nanotechnology</i> , 2005 , 5, 1677-82	1.3	8
90	CONTROLLED ELECTROCOPOLYMERIZATION OF THIOPHENE WITH N-ETHYL CARBAZOLE: IN-SITU AND EX-SITU SPECTROELECTROCHEMICAL INVESTIGATION AND CONDUCTIVITY RELATIONSHIP. International Journal of Polymeric Materials and Polymeric Biomaterials, 2004, 53, 79-94	3	
89	IN-SITU SPECTROELECTROCHEMICAL INVESTIGATION OF INDOLE POLYMERIZATION. <i>International Journal of Polymeric Materials and Polymeric Biomaterials</i> , 2004 , 53, 587-599	3	2
88	ELECTROINDUCED DISPERSIVE POLYMERIZATION OF METHYL METHACRYLATE IN AQUEOUS MEDIA. International Journal of Polymeric Materials and Polymeric Biomaterials, 2004 , 53, 763-776	3	2
87	ELECTROCHEMICAL COPOLYMERIZATION OF N-METHYL PYRROLE WITH CARBAZOLE. International Journal of Polymeric Materials and Polymeric Biomaterials, 2004, 53, 785-798	3	21
86	Electrografting of copolymer of poly[N-vinylcarbazole-co-styrene] and poly[N-vinylcarbazole-co-acrylonitrile] onto carbon fiber: cyclovoltammetric (CV), spectroscopic (UV-Vis, FT-IR-ATR), and morphological study (SEM). <i>Progress in Organic Coatings</i> , 2004 , 49, 85-94	4.8	15
85	Spectroscopic and topographic characterization of the effect of monomer feed ratio in electrocopolymerization of N-vinylcarbazole-co-3-methylthiophene on carbon fiber. <i>Journal of Materials Science</i> , 2004 , 39, 2945-2950	4.3	4
84	Conductive copolymer-modified carbon fibre microelectrodes: electrode characterisation and electrochemical detection of p-aminophenol. <i>Sensors and Actuators B: Chemical</i> , 2004 , 97, 59-66	8.5	54
83	Electroinduced oxidative copolymerization of N-vinyl carbazole with methyl ethyl ketone formaldehyde resin. <i>Polymers for Advanced Technologies</i> , 2004 , 15, 365-369	3.2	13
82	Electrochemical and morphological study of the effect of polymerization conditions on poly(terthiophene). <i>Surface and Coatings Technology</i> , 2004 , 182, 7-13	4.4	44
81	Morphological and spectroscopic analyses of poly[N-vinylcarbazole-co-vinylbenzenesulfonic acid] copolymer electrografted on carbon fiber: the effect of current density. <i>Applied Surface Science</i> , 2004 , 229, 13-18	6.7	10
80	Surface characterisation of electrografted random poly[carbazole-co-3-methylthiophene] copolymers on carbon fiber: XPS, AFM and Raman spectroscopy. <i>Applied Surface Science</i> , 2004 , 222, 148	1-185	47

Electropolymerization 2004, 2 79 Controlled Electroinduced Polymerization of Methyl Methacrylate in the Presence of Catalytic 78 Amount of Cerium(IV). Journal of Macromolecular Science - Pure and Applied Chemistry, 2003, 40, 193-207^{2.2} Electrocopolymerization of Indole and Thiophene: Conductivity-Peak Current Relationship and In Situ Spectroelectrochemical Investigation of Soluble Co-Oligomers. International Journal of Polymer 1.7 9 77 Analysis and Characterization, 2003, 8, 395-409 Electrochemical synthesis and structural studies of polypyrroles, 76 poly(3,4-ethylene-dioxythiophene)s and copolymers of pyrrole and 3,4-ethylenedioxythiophene on 2.6 69 carbon fibre microelectrodes. Journal of Applied Electrochemistry, 2003, 33, 295-301 Electrochemical synthesis of EDOTECZEDOT copolymer on carbon fiber micro-electrodes. 2.6 19 75 Journal of Applied Electrochemistry, 2003, 33, 1223-1231 Soluble and conductive polypyrrole copolymers containing silicone tegomers. Journal of Applied 16 2.9 74 Polymer Science, 2003, 89, 2896-2901 Electrochemical and morphological study of the effect of polymerization conditions on poly(tetrathiophene) with emphasis on carbon fiber microelectrodes: A cyclic voltammetry and 10.4 23 73 atomic force microscopy study. Carbon, 2003, 41, 2725-2730 Structural Study of Pyrrole-EDOT Copolymers on Carbon Fiber Micro-Electrodes. Synthetic Metals, 3.6 32 72 2003, 135-136, 459-460 Time dependent density functional theory calculations for the electronic excitations of 3.6 71 3 pyrrole-acrylamide copolymers. Synthetic Metals, 2003, 135-136, 463-464 Polypyrrole Dispersions on Poly(methy1 methacrylate)-blok-Poly(acrylic acid) Core-shell Latex. 3.6 70 4 Synthetic Metals, 2003, 135-136, 807-808 Electroinduced dispersion polymerization of acrylonitrile in the presence of poly(acrylic acid) and 69 2.9 3 catalytic amount of CE(IV). Journal of Applied Polymer Science, 2002, 84, 723-728 Electroiniated cationic polymerization in the presence of addition-fragmentation agents. Polymer 68 2.4 Bulletin, 2002, 49, 217-223 Electrografting of 3-methyl thiophene and carbazole random copolymer onto carbon fiber: 67 4.4 31 characterization by FTIR-ATR, SEM, EDX. Surface and Coatings Technology, 2002, 160, 227-238 Spectroelectrochemistry of pyrrole oligomers in the presence of acrylamide. Polymer International, 66 3.3 2002, 51, 594-600 Description of the turbidity measurements near the phase transition temperature of poly(N-isopropyl acrylamide) copolymers: the effect of pH, concentration, hydrophilic and 65 5.2 25 hydrophobic content on the turbidity. European Polymer Journal, 2002, 38, 1305-1310 Poly(carbazole-co-acrylamide) electrocoated carbon fibers and their adhesion behavior to an epoxy 64 27 4.3 resin matrix. Journal of Materials Science, 2002, 37, 461-471 In situ spectroelectrochemistry and colorimetry of poly(pyrrole-acrylamide)s. Journal of Materials 63 4.3 12 Science, 2002, 37, 4609-4614 Chemical Polymerization of Acrylamide Initiated with Ce(IV)-Dicarboxylic Acid Redox System: Effect of Chain Length Between the Carboxyl Groups. International Journal of Polymer Analysis and 62 1.7 Characterization, 2002, 7, 263-272

61	Spectroelectrochemical study of N-ethyl-carbazole in the presence of acrylamide. <i>Polymer International</i> , 2001 , 50, 271-276	3.3	10
60	Oxidative polymerization of N-vinylcarbazole in polymer matrix. <i>Polymer International</i> , 2001 , 50, 728-73	333.3	6
59	Electroinduced copolymerization of acrylonitrilepolyethylene glycol compared with chemical copolymerization. <i>Journal of Applied Polymer Science</i> , 2001 , 81, 1410-1419	2.9	
58	Electro-induced polymerization of acrylamide initiated by the potassium permanganate li triplex VI redox system. <i>Journal of Applied Polymer Science</i> , 2001 , 81, 1526-1534	2.9	
57	Soluble polypyrrole copolymers. <i>Journal of Applied Polymer Science</i> , 2001 , 82, 1098-1106	2.9	31
56	Spectroscopic and electrochemical investigation of ternary complexes of D- or L-aspartic acid containing polyacrylamides-Cu(2+)-bovine serum albumin and their radio-stability. <i>Applied Biochemistry and Biotechnology</i> , 2001 , 90, 23-35	3.2	1
55	Electrografting of poly (carbazole-co-acrylamide) onto highly oriented pyrolytic graphite. A cyclovoltammetric, atomic force microscopic and ellipsometric study. <i>Surface and Coatings Technology</i> , 2001 , 145, 164-175	4.4	19
54	Electrografting of poly(carbazole-co-acrylamide) onto several carbon fibers: Electrokinetic and surface properties. <i>Synthetic Metals</i> , 2001 , 123, 411-423	3.6	29
53	Electrografting of thiophene, carbazole, pyrrole and their copolymers onto carbon fibers: electrokinetic measurements, surface composition and morphology. <i>Synthetic Metals</i> , 2001 , 123, 391-4	0 ^{3.6}	33
52	Solvent effect on methyl methacrylate polymerization by cerium. <i>Macromolecular Chemistry and Physics</i> , 2000 , 201, 2742-2746	2.6	1
51	Electrosynthesis and study of carbazole\(\text{B}\)crylamide copolymer electrodes. <i>Polymer</i> , 2000 , 41, 839-847	3.9	31
50	N-Vinylcarbazole-Acrylamide Copolymer Electrodes Electrochemical Response to Dopamine. <i>Journal of the Electrochemical Society</i> , 2000 , 147, 3771	3.9	9
49	The optical, thermal and electrochemical properties of co-electropolymerised films of acrylamide and carbazole. <i>Synthetic Metals</i> , 2000 , 110, 165-174	3.6	17
48	An Electrochemical Study of Homopolymer, Copolymer and Composite Electrodes of Polypyrrole and Polycarbazoles. <i>International Journal of Polymer Analysis and Characterization</i> , 1999 , 5, 157-169	1.7	20
47	Corrosion Inhibition and Photoactivity Behavior of N-Substituted Polycarbazole-Coated Natural Pyrite Electrode. <i>Corrosion</i> , 1999 , 55, 661-666	1.8	3
46	Interpretation of the chain structures of PMMAs, PANs and PAAms obtained by using Ce(IV) and KMnO4 in combination with NTA and DTPA as initiator systems by FTIR spectroscopic analysis. <i>Polymer</i> , 1999 , 40, 7409-7415	3.9	3
45	Redox polymerization. <i>Progress in Polymer Science</i> , 1999 , 24, 1149-1204	29.6	267
44	A quantum mechanical approach to electrochemical behavior of spirochromics. <i>International Journal of Quantum Chemistry</i> , 1999 , 75, 111-117	2.1	4

43	Electrochemically induced redox polymerization of acrylamide. <i>Journal of Applied Polymer Science</i> , 1999 , 72, 861-869	2.9	11
42	Synthesis and electrochemical polymerization of ter-arenes based on N-ethyl carbazole and thiophene. <i>Journal of Polymer Science Part A</i> , 1999 , 37, 379-381	2.5	20
41	Interaction of metal ions with polypyrrole on polyacrylic acid matrix. <i>Journal of Polymer Science Part A</i> , 1999 , 37, 1115-1123	2.5	12
40	Electroinduced polymerization of acrylonitrile in the presence of Ce(IV). <i>Journal of Polymer Science Part A</i> , 1999 , 37, 2319-2327	2.5	9
39	Electro-induced oxidative polymerization of N-vinylcarbazole. <i>Polymers for Advanced Technologies</i> , 1999 , 10, 135-140	3.2	14
38	Electrochemical polymerization of pyrrole in acrylamide solution. <i>Synthetic Metals</i> , 1999 , 98, 177-182	3.6	18
37	Chemical and electrochemical polymerisation of pyrrole in the presence of N-substituted carbazoles. <i>Synthetic Metals</i> , 1999 , 107, 7-17	3.6	51
36	Electro-induced oxidative polymerization of N-vinylcarbazole 1999 , 10, 135		1
35	Fluorescence and Turbidimetry Study of Complexation of Human Serum Albumin with Polycations. Journal of Bioactive and Compatible Polymers, 1997 , 12, 231-244	2	7
34	Water-soluble polypyrroles by matrix polymerization: Interpolymer complexes 1997 , 35, 1255-1263		20
33	Radical polymerization of acrylamide initiated by ceric ammonium nitrate-methionine redox initiator system. <i>Journal of Applied Polymer Science</i> , 1997 , 63, 1643-1648	2.9	10
32	Oxidative polymerization of N-substituted carbazoles. <i>Polymers for Advanced Technologies</i> , 1997 , 8, 556	5- <u>5.6</u> 2	44
31	Ring opening process of some spirochromenes by photoproduced HCl in poly(N-vinyl carbazole). <i>Polymers for Advanced Technologies</i> , 1997 , 8, 563-567	3.2	10
30	Electrochemical reduction and oxidation of some photochromic compounds. <i>Electrochimica Acta</i> , 1997 , 42, 3629-3635	6.7	7
29	Immune response to 17 beta-estradiol in polyelectrolyte complex: antigen specificity and affinity of hybridoma clones. <i>Hybridoma</i> , 1996 , 15, 233-8		10
28	Structural definitions for soluble portions of polyacrylamides synthesized with Ce(IV)Thelating agent redox systems. <i>Polymer International</i> , 1996 , 40, 179-185	3.3	10
27	The polymerization of acrylamide initiated with CE(IV) and KMNO4 redox systems in the presence of glycine. <i>Journal of Applied Polymer Science</i> , 1996 , 60, 759-765	2.9	28
26	Aqueous polymerization of acrylamide by electrolitically generated KMnO4 organic acid redox systems. <i>Journal of Applied Polymer Science</i> , 1996 , 62, 111-116	2.9	9

25	The complex formation between polyacrylamide containing glycine end groups and bovine serium albumin in the presence of copper (II) in neutral aqueous media. <i>Colloid and Polymer Science</i> , 1996 , 274, 418-427	2.4	10
24	Effects of Cu2+ on stability and composition of water soluble ternary polyacrylic acid-Cu2+-protein complexes against radiation damage. <i>Polymer Bulletin</i> , 1996 , 36, 623-627	2.4	5
23	Oxidative polymerization of pyrrole in polymer matrix. <i>Journal of Polymer Science Part A</i> , 1995 , 33, 1581	-1.587	26
22	The Ternary Complexes of Bovine Serum Albumin and Polyacrylamide Derivatives in the Presence Copper Ions in Neutral Water. <i>Journal of Bioactive and Compatible Polymers</i> , 1995 , 10, 121-134	2	10
21	Potentiometric determination of the molecular weight of polymers. <i>Polymer Bulletin</i> , 1994 , 32, 91-95	2.4	9
20	Polypyrrole synthezited with oxidative cerium(IV) ions. <i>Polymer Bulletin</i> , 1994 , 33, 535-540	2.4	25
19	Conductometric determination of the end group ionization in acrylamide and acrylonitrile polymers initiated by carboxylic acids. <i>European Polymer Journal</i> , 1994 , 30, 149-152	5.2	16
18	Block/graft copolymer synthesis via ceric salt. <i>Angewandte Makromolekulare Chemie</i> , 1994 , 214, 19-28		17
17	The free-radical polymerization of acrylamide initiated with ceric sulfate in the presence of amino acids. <i>Angewandte Makromolekulare Chemie</i> , 1993 , 213, 55-63		17
16	Polyaminocarboxylic acidste (IV) redox systems as an initiator in acrylamide polymerization. Journal of Applied Polymer Science, 1993, 47, 1643-1648	2.9	37
15	Quantitative conversion of poly(acrylamide) into poly(vinylamine) by a modified Hofmann degradation. <i>Reactive & Functional Polymers</i> , 1993 , 21, 135-139		3
14	Estimation of the average structural parameters from asphaltites and oil shales-pyrolysis products by 1H and 13C NMR spectroscopy. <i>Fuel Processing Technology</i> , 1992 , 32, 151-158	7.2	4
13	Polymerization of acrylamide by electrolytically generated Ce(IV)-organic acid redox systems. <i>Angewandte Makromolekulare Chemie</i> , 1992 , 198, 191-198		26
12	Polymerization of acrylamide initiated with electrogenerated cerium (IV) in the presence of EDTA. Journal of Applied Polymer Science, 1992, 44, 877-881	2.9	37
11	Nonaqueous potentiometry for analyses of nitrogen bases from asphaltite and oil shale pyrolysis products. <i>Journal of Analytical and Applied Pyrolysis</i> , 1990 , 17, 227-235	6	6
10	Effect of acrylamide concentration on the kinetics of oxidation of tartaric acid by cerium(IV) in sulfuric-perchloric acid media. <i>Journal of Solution Chemistry</i> , 1990 , 19, 901-910	1.8	5
9	Copolymer of ketonic resinpolyacrylonitrile. <i>Journal of Applied Polymer Science</i> , 1990 , 39, 1657-1663	2.9	23
8	Non-aqueous potentiometry of nitrogen containing compounds in chlorobenzene and chlorobenzene-acetic anhydride mixture. <i>Fresenius Zeitschrift Fil Analytische Chemie</i> , 1987 , 328, 663-664		2

LIST OF PUBLICATIONS

7	Kinetics of Ce(IV) oxidation of Eketo acids in sulfuric-perchloric acid media. <i>International Journal of Chemical Kinetics</i> , 1985 , 17, 1333-1345	1.4	8
6	Characterization of pyrolysis products of harbolite and Avgamasya asphaltites: comparison with solvent extracts. <i>Fuel</i> , 1982 , 61, 346-350	7.1	12
5	The nature and origin of harbolite and a related asphaltite from southeastern Turkey. <i>Chemical Geology</i> , 1981 , 34, 151-164	4.2	24
4	Metal-ion oxidative decarboxylations. 10. Substituent effects in the cerium(IV)-benzilic acids reaction. <i>Journal of Organic Chemistry</i> , 1977 , 42, 2069-2073	4.2	12
3	Metal-ion oxidative decarboxylations. 9. Reaction of benzilic acid with cerium(IV) in acidic perchlorate and sulfate media. <i>Journal of Organic Chemistry</i> , 1977 , 42, 2063-2068	4.2	24
2	Nanofibers of Conjugated Polymers		7

Polyelectrolyte Complexes: Immunology Applications6150-6157