List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1203294/publications.pdf Version: 2024-02-01

		117625	182427
248	4,739	34	51
papers	citations	h-index	g-index
252	252	252	4120
all docs	docs citations	times ranked	citing authors

Δςεζλι ς ςλαλδ

#	Article	IF	CITATIONS
1	Single Step Electrochemical Semiâ€Exfoliated Sâ€Doped Grapheneâ€Like Structures from Commercial Carbon Fiber as Efficient Metalâ€Free Catalyst for Hydrogen Evolution Reaction. ChemElectroChem, 2022, 9, .	3.4	10
2	Multilayer crystal-amorphous Pd-based nanosheets on Si/SiO2 with interface-controlled ion transport for efficient hydrogen storage. International Journal of Hydrogen Energy, 2022, 47, 6777-6788.	7.1	5
3	Enhanced Oxygen Evolution Reaction of Zr-Cu-Ni-Al Metallic Glass with an Oxide Layer in Alkaline Media. ACS Catalysis, 2022, 12, 9190-9200.	11.2	4
4	Silk-fibroin-containing nanofibers for topical sertaconazole delivery: preparation, characterization, and antifungal activity. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 605-622.	3.4	11
5	A green approach to fabricate <scp>binderâ€free Sâ€doped</scp> graphene oxide electrodes for vanadium redox battery. International Journal of Energy Research, 2021, 45, 2126-2137.	4.5	23
6	Thermomechanical and structural characterization of polybutadiene/poly(ethylene oxide)/ <scp>CNT stretchable electrospun fibrous</scp> membranes. Polymers for Advanced Technologies, 2021, 32, 248-261.	3.2	6
7	Electrospun nanofibers of poly (acrylonitrile-co-itaconic acid)/silver and polyacrylonitrile/silver: <i>In situ</i> preparation, characterization, and antimicrobial activity. Journal of Industrial Textiles, 2021, 50, 1594-1624.	2.4	4
8	Carbon Nanomaterials. , 2021, , 784-809.		1
9	Electrospun polyacrylonitrile/2-(acryloyloxy)ethyl ferrocenecarboxylate polymer blend nanofibers. Molecular Systems Design and Engineering, 2021, 6, 476-492.	3.4	5
10	Functionalized highly electron-rich redox-active electropolymerized 3,4-propylenedioxythiophenes as precursors and targets for bioelectronics and supercapacitors. Molecular Systems Design and Engineering, 2021, 6, 214-233.	3.4	11
11	Nanoporous Pd–Cu–Si Amorphous Thin Films for Electrochemical Hydrogen Storage and Sensing. ACS Applied Energy Materials, 2021, 4, 2672-2680.	5.1	7
12	Origin of Electrocatalytic Activity in Amorphous Nickel–Metalloid Electrodeposits. ACS Applied Materials & Interfaces, 2021, 13, 23689-23701.	8.0	8
13	Effective Methanol Oxidation with Platinum Nanoparticles-Decorated Poly(2-bromomethyl-2-methyl-3,4-propylenedioxythiophene)-Coated Glassy Carbon Electrode. Journal of the Electrochemical Society, 2021, 168, 086503.	2.9	3
14	Enhancement of Interfacial Hydrogen Interactions with Nanoporous Gold-Containing Metallic Glass. ACS Applied Materials & Interfaces, 2021, 13, 42613-42623.	8.0	8
15	Porosity and thickness effect of Pd–Cu–Si metallic glasses on electrocatalytic hydrogen production and storage. Materials and Design, 2021, 210, 110099.	7.0	7
16	Transition metal-based high entropy alloy microfiber electrodes: Corrosion behavior and hydrogen activity. Corrosion Science, 2021, 193, 109880.	6.6	16
17	Surface electrocoating of single carbon fibre with electroactive 3,4-ethylenedioxythiophene/1â€p(tolylsulphonyl) pyrrole copolymer: effect of dielectric constant of solvent. Bulletin of Materials Science, 2021, 44, 1.	1.7	6
18	Nanocomposite structures of polypyrrole derivatives and poly (acrylonitrile 0â€itaconic acid) produced by in situ polymerization as carbon nanofiber precursor. Polymers for Advanced Technologies, 2020, 31, 536-543.	3.2	3

#	Article	IF	CITATIONS
19	Electrocatalytic Behavior of Hydrogenated Pd-Metallic Glass Nanofilms: Butler-Volmer, Tafel, and Impedance Analyses. Electrocatalysis, 2020, 11, 94-109.	3.0	27
20	Voriconazole incorporated nanofiber formulations for topical application: preparation, characterization and antifungal activity studies against <i>Candida</i> species. Pharmaceutical Development and Technology, 2020, 25, 440-453.	2.4	20
21	A multifunctional longâ€ŧerm release system for treatment of hypothyroidism. Journal of Biomedical Materials Research - Part A, 2020, 108, 760-759.	4.0	5
22	Thermally Treated Graphene Oxide/Polyacrylonitrile Based Electrospun Carbon Nanofiber Precursor. Journal of Nanoscience and Nanotechnology, 2020, 20, 3448-3459.	0.9	10
23	Surface-governed electrochemical hydrogenation in FeNi-based metallic glass. Journal of Power Sources, 2020, 475, 228700.	7.8	11
24	Effective electrocatalytic methanol oxidation of Pd-based metallic glass nanofilms. Nanoscale, 2020, 12, 22586-22595.	5.6	22
25	Silver sulfadiazine Loaded Poly (ε-Caprolactone)/Poly (Ethylene Oxide) Composite Nanofibers for Topical Drug Delivery. Nano, 2020, 15, 2050073.	1.0	5
26	Thermal stabilization of poly(acrylonitrile-co-itaconic acid) nanofibers as carbon nanofiber precursor. Polymer Degradation and Stability, 2020, 175, 109142.	5.8	6
27	Oligoether Ester-Functionalized ProDOT Copolymers on Si/Monolayer Graphene as Capacitive Thin Film Electrodes. Journal of the Electrochemical Society, 2020, 167, 070543.	2.9	9
28	Nonflammable pre-carbonized polyacrylonitrile nanofiber webs. SN Applied Sciences, 2020, 2, 1.	2.9	1
29	Hydrogen storage performance of the multi-principal-component CoFeMnTiVZr alloy in electrochemical and gas–solid reactions. RSC Advances, 2020, 10, 24613-24623.	3.6	34
30	Metallic Glass Films with Nanostructured Periodic Density Fluctuations Supported on Si/SiO ₂ as an Efficient Hydrogen Sorber. Chemistry - A European Journal, 2020, 26, 8244-8253.	3.3	11
31	Effects of Polyvinylpyrrolidone and Ethyl Cellulose in Polyurethane Electrospun Nanofibers on Morphology and Drug Release Characteristics. Turkish Journal of Pharmaceutical Sciences, 2020, 17, 638-644.	1.4	8
32	Effect of polyvinylpyrolidone and ethyl cellulose in polyurethane electrospun nanofibers on morphology and drug release characteristics. Turkish Journal of Pharmaceutical Sciences, 2020, .	1.4	0
33	Effect of a Single Application of CPP-ACPF Varnish on the Prevention of Erosive Tooth Wear: An AAS, AFM and SMH Study. Oral Health & Preventive Dentistry, 2020, 18, 311-318.	0.5	4
34	Development of a flame retardant chemical for finishing of cotton, polyester, and CO/PET blends. Journal of Industrial Textiles, 2019, 49, 141-161.	2.4	22
35	A Novel Dioxythiophene Based Conducting Polymer as Electrode Material for Supercapacitor Application. International Journal of Electrochemical Science, 2019, , 9504-9519.	1.3	11
36	A Ternary PEDOT-TiO2-Reduced Graphene Oxide Nanocomposite for Supercapacitor Applications. Macromolecular Research, 2019, 27, 867-875.	2.4	9

#	Article	IF	CITATIONS
37	Ultrahigh hydrogen-sorbing palladium metallic-glass nanostructures. Materials Horizons, 2019, 6, 1481-1487.	12.2	16
38	A Novel Carbon Nanofiber Precursor: Poly(acrylonitrile-co-vinylacetate-co-itaconic acid) Terpolymer. Journal of Nanoscience and Nanotechnology, 2019, 19, 3844-3853.	0.9	6
39	Electrospun polyacrylonitrile–lauric acid composite nanofiber webs as a thermal energy storage material. Journal of Engineered Fibers and Fabrics, 2019, 14, 155892501882489.	1.0	4
40	Carbon Nanomaterials. Advances in Chemical and Materials Engineering Book Series, 2019, , 1-33.	0.3	2
41	Polypyrrole/barium titanate/poly(acrylonitrile-co-methylacrylate)–deposited cotton fabrics: Electromagnetic shielding. Journal of Industrial Textiles, 2018, 47, 656-673.	2.4	9
42	Oxidation of polyacrylonitrile nanofiber webs as a precursor for carbon nanofiber: aligned and non-aligned nanofibers. Polymer Bulletin, 2018, 75, 485-499.	3.3	32
43	Determination of Membrane Protein Fouling by UV Spectroscopy and Electrochemical Impedance Spectroscopy. Polymer-Plastics Technology and Engineering, 2018, 57, 59-69.	1.9	14
44	Fabrication and characterization of poly(butyl acrylate-co-methyl methacrylate)-polypyrrole nanofibers. Polymer Bulletin, 2018, 75, 1607-1617.	3.3	3
45	Impedimetric DNA biosensor based on polyurethane/poly(m-anthranilic acid) nanofibers. Sensors and Actuators B: Chemical, 2018, 254, 719-726.	7.8	30
46	Effects of carboxylated multi-walled carbon nanotubes having different outer diameters on hollow fiber ultrafiltration membrane fabrication and characterization by electrochemical impedance spectroscopy. Polymer Bulletin, 2018, 75, 2431-2457.	3.3	8
47	Electrospun carbon nanofiber web electrode: Supercapacitor behavior in various electrolytes. Journal of Applied Polymer Science, 2018, 135, 45723.	2.6	28
48	Morphological and Electrochemical Impedance Spectroscopy (EIS) Study of poly(3,4) Tj ETQq0 0 0 rgBT /Overloc Electrochemical Science, 2018, , 433-451.	k 10 Tf 50 1.3) 307 Td (eth) 2
49	Preparation and Electrochemical Performances of Graphene Oxide/PEDOT and Reduced Graphene Oxide/PEDOT Nanofibers and Nanocomposites. Fibers and Polymers, 2018, 19, 2178-2187.	2.1	13
50	Electrosorption of Hydrogen in Pd-Based Metallic Glass Nanofilms. ACS Applied Energy Materials, 2018, 1, 2630-2646.	5.1	28
51	Facile synthesis of poly[1â€p (tolylsulfonyl) pyrrole] via Ce <i>(IV)â€</i> pyrrole <i>redox</i> initiating system and polyacrylonitrile blended nanofibers. Polymers for Advanced Technologies, 2018, 29, 2440-2448.	3.2	5
52	Novel Biocompatible Poly(Aspartamide) Based Drug Conjugates. Biophysical Journal, 2018, 114, 691a.	0.5	0
53	RGD functionalized poly(<i>ε</i> -caprolactone)/poly(m-anthranilic acid) electrospun nanofibers as high-performing scaffolds for bone tissue engineering RGD functionalized PCL/P3ANA nanofibers. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 139-148.	3.4	32
54	Polyurethane/hydroxypropyl cellulose electrospun nanofiber mats as potential transdermal drug delivery system: characterization studies and <i>in vitro</i> assays. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 655-664.	2.8	79

#	Article	IF	CITATIONS
55	Superhydrophobic fluorinated acylonitrile coatings via electrospraying. Progress in Organic Coatings, 2017, 105, 342-352.	3.9	15
56	Au/PANA/PVAc and Au/P(ANA-co-CNTA)/PVAc electrospun nanofibers as tyrosinase immobilization supports. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 658-668.	3.4	1
57	Glucose oxidase immobilization onto Au/poly[anthranilic acid-co-3-carboxy-N-(2-thenylidene)aniline]/PVAc electrospun nanofibers. Polymer Bulletin, 2017, 74, 1493-1517.	3.3	6
58	Characterization of polyacrylonitrile, poly(acrylonitrileâ€ <i>co</i> â€vinyl acetate), and poly(acrylonitrileâ€ <i>co</i> â€itaconic acid) based activated carbon nanofibers. Journal of Applied Polymer Science, 2017, 134, .	2.6	46
59	Electrochemical and Morphological Analysis of Poly(3,4-alkylenedioxythiophene)-Modified TiO ₂ Nanorod Electrodes. Journal of Nanoscience and Nanotechnology, 2017, 17, 5461-5468.	0.9	2
60	Poly(acrylonitrile-co-itaconic acid)–poly(3,4-ethylenedioxythiophene) and poly(3-methoxythiophene) nanoparticles and nanofibres. Bulletin of Materials Science, 2017, 40, 957-969.	1.7	8
61	FR Performance of New Fire-off on PET/CO blend fabrics. IOP Conference Series: Materials Science and Engineering, 2017, 254, 082003.	0.6	Ο
62	Oxidative stabilization of polyacrylonitrile nanofibers and carbon nanofibers containing graphene oxide (GO): a spectroscopic and electrochemical study. Beilstein Journal of Nanotechnology, 2017, 8, 1616-1628.	2.8	55
63	Gold nanoparticle/nickel oxide/poly(pyrrole-N-propionic acid) hybrid multilayer film: Electrochemical study and its application in biosensing. EXPRESS Polymer Letters, 2017, 11, 449-466.	2.1	11
64	Morphological effect of composite TiO2 nanorod-TiO2 nanoparticle/PEDOT:PSS electrodes on triiodide reduction. EXPRESS Polymer Letters, 2017, 11, 106-116.	2.1	4
65	Electrochemical Impedance Spectroscopic Study on Polypyrrole/Barium Titanate/Poly(acrylonitrile-co-methylacrylate) Nanoparticles. Journal of the Electrochemical Society, 2016, 163, H205-H212.	2.9	6
66	Synthesis and characterization of poly (acrylonitrileâ€coâ€acrylic acid) as precursor of carbon nanofibers. Polymers for Advanced Technologies, 2016, 27, 1383-1388.	3.2	28
67	Covalent Immobilization of Urease on Poly(Pyrrole-3-carboxylic Acid): Electrochemical Impedance and Mott Schottky Study. Journal of the Electrochemical Society, 2016, 163, B435-B444.	2.9	7
68	Enhanced osteogenesis on biofunctionalized poly(É>-caprolactone)/poly(m-anthranilic acid) nanofibers. Journal of Biomaterials Applications, 2016, 31, 743-754.	2.4	11
69	Frequency and Temperature Dependence of Dielectric Behaviors for Conductive Acrylic Composites. Advances in Polymer Technology, 2016, 35, .	1.7	15
70	Electropolymerization of 9-Carbazole Acetic Acid in Room Temperature Ionic Liquid-Acetonitrile Mixture: Morphology, Capacitance, and Mott–Schottky Analysis. Journal of the Electrochemical Society, 2016, 163, G107-G114.	2.9	12
71	Synthesis, Characterization and Electrochemical Polymerization of a Comonomer Bearing Thiophene and Imidazole: The Comparison of Impedance Behavior on Different Surfaces. ECS Journal of Solid State Science and Technology, 2016, 5, P211-P217.	1.8	1
72	In-situ preparation and characterization of pyrrole and tert-butyl 1-pyrrole-carboxylate on barium titanate/poly(acrylonitrile-co-methylacrylate) nanoparticles. Reactive and Functional Polymers, 2016, 100, 1-11.	4.1	4

#	Article	IF	CITATIONS
73	(Au/PANA/PVAc) nanofibers as a novel composite matrix for albumin and streptavidin immobilization. Materials Science and Engineering C, 2016, 60, 260-275.	7.3	7
74	Electrochemical Impedance Study on Poly(Alkylenedioxy)Thiophene Nanostructures: Solvent and Potential Effect. Nanoscience and Technology, 2016, , 461-476.	1.5	1
75	The effect of deposition on electrochemical impedance properties of TiO2/FTO photoanodes. Journal of Electroceramics, 2016, 36, 102-111.	2.0	6
76	Covalent streptavidin immobilization on electrospun poly(<i>m</i> -anthranilic) Tj ETQq0 0 0 rgBT /Overlock 10 ⁻ Polymers, 2016, 31, 291-303.	rf 50 627 2.1	Td (acid)/poly 3
77	Electrochemical impedance and spectroscopy study of the EDC/NHS activation of the carboxyl groups on poly(ε-caprolactone)/poly(m-anthranilic acid) nanofibers. EXPRESS Polymer Letters, 2016, 10, 96-110.	2.1	38
78	BMP-2 immobilized PCL/P3ANA nanofibers for bone tissue engineering. , 2015, , .		2
79	Covalent Immobilization of Tyrosinase on Electrospun Polyacrylonitrile/Polyurethane/Poly(<i>m</i> -anthranilic acid) Nanofibers: An Electrochemical Impedance Study. Polymer-Plastics Technology and Engineering, 2015, 54, 1494-1504.	1.9	28
80	Electrochemical impedance spectroscopic study of single-stranded DNA-immobilized electroactive polypyrrole-coated electrospun poly(<i>ε</i> -caprolactone) nanofibers. Materials Express, 2015, 5, 269-279.	0.5	33
81	Synthesis and Characterization of Poly(Acrylonitrile-co-Vinylacetate)/Fe ₂ O ₃ @PEDOT Core-Shell Nanocapsules and Nanofibers. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 597-609.	3.4	8
82	Synthesis and electrochemical investigation of polyindole based fiber as sensor electrode by EIS method. Fibers and Polymers, 2015, 16, 1468-1477.	2.1	10
83	In situ spectroscopic and electrochemical impedance study of gold/poly (anthranilic acid) core/shell nanoparticles. European Polymer Journal, 2015, 66, 502-512.	5.4	12
84	Incorporation of growth factor loaded microspheres into polymeric electrospun nanofibers for tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2014, 102, 1897-1908.	4.0	47
85	A review: effect of conductive polymers on the conductivities of electrospun mats. Textile Reseach Journal, 2014, 84, 1325-1342.	2.2	62
86	Electrospun antibacterial nanofibrous polyvinylpyrrolidone/cetyltrimethylammonium bromide membranes for biomedical applications. Journal of Bioactive and Compatible Polymers, 2014, 29, 382-397.	2.1	18
87	Electrochemical synthesis, characterization and capacitive properties of novel thiophene based conjugated polymer. Reactive and Functional Polymers, 2014, 83, 107-112.	4.1	11
88	An impedance-morphology study on poly(3-methylthiophene) coated electrode obtained in boron trifluoride diethyl etherate–acetonitrile. Synthetic Metals, 2014, 195, 44-53.	3.9	15
89	Nanofibers of Poly(Acrylonitrile-co-Methylacrylate)/Polypyrrole Core–Shell Nanoparticles. Advanced Science, Engineering and Medicine, 2014, 6, 301-310.	0.3	4
90	New Preparation Route of TiO ₂ Nanofibers by Electrospinning: Spectroscopic and Thermal Characterizations. Science of Advanced Materials, 2014, 6, 2618-2624.	0.7	15

#	Article	IF	CITATIONS
91	<i>In Situ</i> Preparation of Core Shell-Polypyrrole /Poly (Acrylonitrile-Co-Vinyl Acetate) Nanoparticles and Their Nanofibers. Soft Nanoscience Letters, 2014, 04, 42-49.	0.8	4
92	Acrylonitrile/vinyl acetate copolymer nanofibers with different vinylacetate content. Journal of Applied Polymer Science, 2013, 127, 3830-3838.	2.6	14
93	Synthesis of urethane acrylate based electromagnetic interference shielding materials. Journal of Applied Polymer Science, 2013, 127, 4957-4966.	2.6	4
94	Electrochemical impedance study on nanofibers of poly(m-anthranilic acid)/polyacrylonitrile blends. European Polymer Journal, 2013, 49, 2645-2653.	5.4	29
95	Inhibition of pyrite corrosion and photocorrosion by MEKF-R modified carbazoles. Progress in Organic Coatings, 2013, 76, 533-540.	3.9	13
96	Polypyrrole/Poly(acrylonitrileâ€ <i>co</i> â€butyl acrylate) Composite. Advances in Polymer Technology, 2013, 32, .	1.7	6
97	Transparent poly(methyl methacrylateâ€ <i>co</i> â€butyl acrylate) nanofibers. Journal of Applied Polymer Science, 2013, 130, 4264-4272.	2.6	7
98	Impedance and Morphology of Hydroxy- and Chloro-Functionalized Poly(3,4-propylenedioxythiophene) Nanostructures. Journal of Nanoscience and Nanotechnology, 2012, 12, 7869-7878.	0.9	15
99	Polyblend nanofibers as tissue engineering matrices. New Biotechnology, 2012, 29, S112.	4.4	Ο
100	Electrochemical impedance characterization and potential dependence of poly[3,4-(2,2-dibutylpropylenedioxy)thiophene] nanostructures on single carbon fiber microelectrode. Synthetic Metals, 2012, 162, 511-515.	3.9	15
101	Superhydrophobic terpolymer nanofibers containing perfluoroethyl alkyl methacrylate by electrospinning. Applied Surface Science, 2012, 258, 5815-5821.	6.1	62
102	Preparation and characterization of electrospun polyurethane–polypyrrole nanofibers and films. Journal of Applied Polymer Science, 2012, 125, 4100-4108.	2.6	48
103	Conducting Polymers and their Applications. Current Physical Chemistry, 2012, 2, 224-240.	0.2	112
104	Synthesis of 2â€(9 <i>H</i> â€carbazoleâ€9â€yl)ethyl methacrylate: Electrochemical impedance spectroscopic study of poly(2â€(9 <i>H</i> â€carbazoleâ€9â€yl)ethyl methacrylate) on carbon fiber. Journal of Applied Polymer Science, 2011, 121, 3475-3482.	2.6	11
105	Electrochemical impedance of poly(9-tosyl-9H-carbazole-co-pyrrole) electrocoated carbon fiber. Materials Chemistry and Physics, 2011, 127, 120-127.	4.0	20
106	Synthesis and electropolymerization of 9-tosyl-9H-carbazole, electrochemical impedance spectroscopic study and circuit modelling. Fibers and Polymers, 2011, 12, 8-14.	2.1	27
107	Characterization of conductive poly(acrylonitrile-co-vinyl acetate) composites: Matrix polymerization of pyrrole derivatives. Fibers and Polymers, 2011, 12, 151-158.	2.1	12
108	Synthesis and characterization of electrically conductive composite films of polypyrrole/poly(acrylonitrile-co-styrene). Fibers and Polymers, 2011, 12, 565-571.	2.1	17

#	Article	IF	CITATIONS
109	Dielectric, FTIR spectroscopic and atomic force microscopic studies on polypyrroleâ€poly(acrylonitrileâ€ <i>co</i> â€vinyl acetate) composites. Polymer Composites, 2011, 32, 546-557.	4.6	6
110	Mechanical and thermal properties of perfluoroalkyl ethyl methacrylate–methyl methacrylate statistical copolymers synthesized in supercritical carbon dioxide. Journal of Fluorine Chemistry, 2011, 132, 348-355.	1.7	24
111	Electrochemical Impedance Spectroscopic Study of Polythiophenes on Carbon Materials. Polymer-Plastics Technology and Engineering, 2011, 50, 1130-1148.	1.9	28
112	Electrosynthesis of Poly(3-dodecyl thiophene) in Acetonitrile with Boron Trifluoride Diethyl Etherate: The Effect of the Electrolyte on Electrochemical Impedance and Morphology. Journal of the Electrochemical Society, 2011, 159, D1-D8.	2.9	10
113	Electrochemical synthesis of Poly[3, 4-Propylenedioxythiophene-co-N-Phenylsulfonyl Pyrrole]: Morphological, electrochemical and spectroscopic characterization. EXPRESS Polymer Letters, 2011, 5, 493-505.	2.1	16
114	Polypyrrole/polyacrylonitrile composite films: Dielectric, spectrophotometric and morphologic characterization. Fibers and Polymers, 2010, 11, 843-850.	2.1	13
115	Morphological and impedance studies on electropolymerized 3,4-(2,2-dibenzylpropylenedioxy)thiophene nanostructures on micron sized single carbon fiber. Progress in Organic Coatings, 2010, 69, 527-533.	3.9	18
116	Electrochemical Copolymerization of 3,4-Ethylenedioxythiophene and N-Phenylsulfonyl Pyrrole: Morphologic, Spectroscopic, Electrochemical Characterizations. Journal of the Electrochemical Society, 2010, 157, P99.	2.9	9
117	Nanofiber Network of Electropolymerized 3,4-(2-Benzylpropylenedioxy)thiophene on Single Carbon Fiber Microelectrode. Journal of Nanoscience and Nanotechnology, 2010, 10, 8043-8053.	0.9	7
118	Polymerization of pyrrole derivatives on polyacrylonitrile matrix, FTIR–ATR and dielectric spectroscopic characterization of composite thin films. Synthetic Metals, 2010, 160, 1189-1196.	3.9	57
119	Poly(3,4-alkylenedioxythiophene) Nanostructures. Materials Research Society Symposia Proceedings, 2009, 1240, 1.	0.1	0
120	Electrochemical impedance spectroscopy of poly[carbazole-co-N-p-tolylsulfonyl pyrrole] on carbon fiber microelectrodes, equivalent circuits for modelling. Progress in Organic Coatings, 2009, 65, 281-287.	3.9	46
121	Conducting polymer coated carbon surfaces and biosensor applications. Progress in Organic Coatings, 2009, 66, 337-358.	3.9	128
122	Monomer concentration effect on electrochemically modified carbon fiber with poly[1â€(4â€methoxyphenyl)â€1 <i>H</i> â€pyrrole] as microcapacitor electrode. Advances in Polymer Technology, 2009, 28, 120-130.	1.7	22
123	Electropolymerization of <i>N</i> â€hydroxyethylcarbazole on carbon fiber microelectrodes. Journal of Applied Polymer Science, 2009, 113, 136-142.	2.6	6
124	Capacitive behavior of polycarbazole- and poly(N-vinylcarbazole)-coated carbon fiber microelectrodes in various solutions. Journal of Applied Electrochemistry, 2009, 39, 2043-2048.	2.9	39
125	Polycarbazole modified carbon fiber microelectrode: Surface characterization and dopamine sensor. Fibers and Polymers, 2009, 10, 46-52.	2.1	35
126	A novel EDOT–nonylbithiazole–EDOT based comonomer as an active electrode material for supercapacitor applications. Electrochimica Acta, 2009, 54, 6354-6360.	5.2	39

#	Article	IF	CITATIONS
127	Electropolymerization, characterization and corrosion performance of poly(N-ethylaniline) on copper. Electrochimica Acta, 2009, 55, 104-112.	5.2	67
128	Copolymers of N-vinylcarbazole with Acrylic Acid, Itaconic Acid, and N-isopropylacrylamide: Synthesis, Determination of Monomer Reactivity Ratios, and Electrochemical Properties. International Journal of Polymer Analysis and Characterization, 2009, 14, 140-159.	1.9	5
129	Effect of Electrolyte on the Electropolymerization of 2,2-Dibutyl-3,4-Propylenedioxythiophene on Carbon Fiber Microelectrodes. Journal of Nanoscience and Nanotechnology, 2009, 9, 2877-2886.	0.9	5
130	Electrochemical impedance spectroscopy and morphological analyses of pyrrole, phenylpyrrole and methoxyphenylpyrrole on carbon fiber microelectrodes. Surface and Coatings Technology, 2008, 202, 3997-4005.	4.8	60
131	Carbon fiber microelectrodes electrocoated with polycarbazole and poly(carbazole-co-p-tolylsulfonyl pyrrole) films for the detection of dopamine in presence of ascorbic acid. Mikrochimica Acta, 2008, 160, 247-251.	5.0	73
132	An experimental and quantum mechanical study on electrochemical properties of N-substituted pyrroles. Computational and Theoretical Chemistry, 2008, 857, 95-104.	1.5	11
133	Electrochemical impedance study of polyaniline electrocoated porous carbon foam. Progress in Organic Coatings, 2008, 62, 96-104.	3.9	22
134	Electrochemical impedance spectroscopy of poly(N-methyl pyrrole) on carbon fiber microelectrodes and morphology. Progress in Organic Coatings, 2008, 62, 331-335.	3.9	28
135	A Study of the Electrochemical Behavior of Poly [N-Vinyl Carbazole] Formed on Carbon-Fiber Microelectrodes and Its Response to Dopamine. IEEE Sensors Journal, 2008, 8, 1628-1639.	4.7	46
136	Potential dependence of electrochemical impedance of nanoscale modified carbon fibre surface. Surface Engineering, 2008, 24, 358-365.	2.2	8
137	Characterization of Micrometer-Sized Thin Films of Electrocoated Carbazole with p-Tolylsulfonyl Pyrrole on Carbon Fiber Microelectrodes. Journal of the Electrochemical Society, 2007, 154, D283.	2.9	39
138	Nanoscale Surface Morphology and Monomer Concentration Dependence on Impedance of Electrocoated 2,2-Dimethyl-3,4-Propylene-dioxythiophene on Carbon Fiber Microelectrode. Journal of Nanoscience and Nanotechnology, 2007, 7, 3543-3552.	0.9	17
139	Synthesis and electrochemical polymerization ofN-ethylcarbazole-bis-3,4-etyhlenedioxythiophene-N-ethylcarbazole comonomer. Journal of Applied Polymer Science, 2007, 103, 795-801.	2.6	10
140	Microcomposite electrochemical capacitor: Electrocoating of poly[N-(hydroxymethyl)carbazole] onto carbon fiber, surface morphology, spectroscopic surface characterization, electrochemical impedance spectroscopy. Journal of Applied Polymer Science, 2007, 104, 238-246.	2.6	18
141	Block copolymers of <i>N</i> â€vinyl carbazole and α,ï‰â€dihydroxy polydimethylsiloxane. Journal of Applied Polymer Science, 2007, 106, 3694-3702.	2.6	12
142	Synthesis and electrochemical characterization of bis(3,4-ethylene-dioxythiophene)-(4,4′-dinonyl-2,2′-bithiazole) comonomer. Electrochimica Acta, 2007, 52, 2158-2165.	5.2	24
143	Synthesis and electrocoating of indole–thiophene comonomer on carbon fiber microelectrode, and surface topography by AFM. European Polymer Journal, 2007, 43, 3392-3399.	5.4	9
144	Synthesis, electrochemical characterization and impedance studies on novel thiophene-nonylbithiazole-thiophene comonomer. Journal of Electroanalytical Chemistry, 2007, 610, 113-121.	3.8	34

#	Article	IF	CITATIONS
145	Electrochemical composite formation of thiophene and N-methylpyrrole polymers on carbon fiber microelectrodes: Morphology, characterization by surface spectroscopy, and electrochemical impedance spectroscopy. Progress in Organic Coatings, 2007, 59, 28-36.	3.9	18
146	Electrochemically polymerized 2,2-dimethyl-3,4-propylenedioxythiophene on carbon fiber for microsupercapacitor. Progress in Organic Coatings, 2007, 60, 281-286.	3.9	50
147	Electrolyte and solvent effects of electrocoated polycarbazole thin films on carbon fiber microelectrodes. Journal of Applied Electrochemistry, 2006, 36, 889-898.	2.9	56
148	Reflectance FTIR and SEM characterization of poly[N-vinylcarbazole-co-methylmethacrylate] electrografted carbon fiber surface: current density effect. Journal of Materials Science, 2006, 41, 389-398.	3.7	5
149	Nanocharacterization of electrocoated polymers on carbon fibers. Microelectronic Engineering, 2006, 83, 1534-1537.	2.4	17
150	FIB-SIMS investigation of carbazole-based polymer and copolymers electrocoated onto carbon fibers, and an AFM morphological study. Surface and Coatings Technology, 2005, 194, 36-41.	4.8	15
151	Electrocoating of carbon fibres: A route for interface control in carbon fibre reinforced poly methylmethacrylate?. Composites Science and Technology, 2005, 65, 1564-1573.	7.8	26
152	Characterisation of nanosize thin films of electrografted N-vinylcarbazole copolymers (P[NVCz–co-VBSA] and P[NVCz–co-3-MeTh]) onto carbon fibre. Applied Surface Science, 2005, 243, 183-198.	6.1	13
153	Comparative Study of Chemical and Electrochemical Copolymerization of N-Methylpyrrole with N-Ethylcarbazole Spectroscopic and Cyclic Voltammetric Analysis. International Journal of Polymeric Materials and Polymeric Biomaterials, 2005, 54, 883-897.	3.4	20
154	Electrochemical copolymerization of Carbazole, Ethylcarbazole and N-Vinylcarbazole with methyl ethyl ketone-formaldehyde resin. International Journal of Polymeric Materials and Polymeric Biomaterials, 2005, 54, 161-172.	3.4	4
155	Electrochemical Copolymerization of Pyrrole and Methyl Ethyl Ketone Formaldehyde Resin. International Journal of Polymeric Materials and Polymeric Biomaterials, 2005, 54, 1019-1030.	3.4	6
156	Nanoscale Characterization of Carbazole–Indole Copolymers Modified Carbon Fiber Surfaces. Journal of Nanoscience and Nanotechnology, 2005, 5, 1677-1682.	0.9	8
157	CONTROLLED ELECTROCOPOLYMERIZATION OF THIOPHENE WITH N-ETHYL CARBAZOLE: IN-SITU AND EX-SITU SPECTROELECTROCHEMICAL INVESTIGATION AND CONDUCTIVITY RELATIONSHIP. International Journal of Polymeric Materials and Polymeric Biomaterials, 2004, 53, 79-94.	3.4	0
158	IN-SITU SPECTROELECTROCHEMICAL INVESTIGATION OF INDOLE POLYMERIZATION. International Journal of Polymeric Materials and Polymeric Biomaterials, 2004, 53, 587-599.	3.4	2
159	ELECTROINDUCED DISPERSIVE POLYMERIZATION OF METHYL METHACRYLATE IN AQUEOUS MEDIA. International Journal of Polymeric Materials and Polymeric Biomaterials, 2004, 53, 763-776.	3.4	2
160	ELECTROCHEMICAL COPOLYMERIZATION OF N-METHYL PYRROLE WITH CARBAZOLE. International Journal of Polymeric Materials and Polymeric Biomaterials, 2004, 53, 785-798.	3.4	22
161	Electrografting of copolymer of poly[N-vinylcarbazole-co-styrene] and poly[N-vinylcarbazole-co-acrylonitrile] onto carbon fiber: cyclovoltammetric (CV), spectroscopic (UV-Vis, FT-IR-ATR), and morphological study (SEM). Progress in Organic Coatings, 2004, 49, 85-94.	3.9	19
162	Spectroscopic and topographic characterization of the effect of monomer feed ratio in electrocopolymerization of N-vinylcarbazole-co-3-methylthiophene on carbon fiber. Journal of Materials Science, 2004, 39, 2945-2950.	3.7	5

#	Article	IF	CITATIONS
163	Conductive copolymer-modified carbon fibre microelectrodes: electrode characterisation and electrochemical detection of p-aminophenol. Sensors and Actuators B: Chemical, 2004, 97, 59-66.	7.8	57
164	Electroinduced oxidative copolymerization ofN-vinyl carbazole with methyl ethyl ketone formaldehyde resin. Polymers for Advanced Technologies, 2004, 15, 365-369.	3.2	14
165	Electrochemical and morphological study of the effect of polymerization conditions on poly(terthiophene). Surface and Coatings Technology, 2004, 182, 7-13.	4.8	48
166	Morphological and spectroscopic analyses of poly[N-vinylcarbazole-co-vinylbenzenesulfonic acid] copolymer electrografted on carbon fiber: the effect of current density. Applied Surface Science, 2004, 229, 13-18.	6.1	10
167	Surface characterisation of electrografted random poly[carbazole-co-3-methylthiophene] copolymers on carbon fiber: XPS, AFM and Raman spectroscopy. Applied Surface Science, 2004, 222, 148-165.	6.1	52
168	Title is missing!. Journal of Applied Electrochemistry, 2003, 33, 295-301.	2.9	75
169	Electrochemical synthesis of EDOT–ECZ–EDOT copolymer on carbon fiber micro-electrodes. Journal of Applied Electrochemistry, 2003, 33, 1223-1231.	2.9	21
170	Soluble and conductive polypyrrole copolymers containing silicone tegomers. Journal of Applied Polymer Science, 2003, 89, 2896-2901.	2.6	19
171	Electrochemical and morphological study of the effect of polymerization conditions on poly(tetrathiophene) with emphasis on carbon fiber microelectrodes: A cyclic voltammetry and atomic force microscopy study. Carbon, 2003, 41, 2725-2730.	10.3	23
172	Structural Study of Pyrrole-EDOT Copolymers on Carbon Fiber Micro-Electrodes. Synthetic Metals, 2003, 135-136, 459-460.	3.9	34
173	Time dependent density functional theory calculations for the electronic excitations of pyrrole-acrylamide copolymers. Synthetic Metals, 2003, 135-136, 463-464.	3.9	3
174	Polypyrrole Dispersions on Poly(methy1 methacrylate)-blok-Poly(acrylic acid) Core-shell Latex. Synthetic Metals, 2003, 135-136, 807-808.	3.9	4
175	Controlled Electroinduced Polymerization of Methyl Methacrylate in the Presence of Catalytic Amount of Cerium(IV). Journal of Macromolecular Science - Pure and Applied Chemistry, 2003, 40, 193-207.	2.2	4
176	Electrocopolymerization of Indole and Thiophene: Conductivity-Peak Current Relationship and In Situ Spectroelectrochemical Investigation of Soluble Co-Oligomers. International Journal of Polymer Analysis and Characterization, 2003, 8, 395-409.	1.9	9
177	Chemical Polymerization of Acrylamide Initiated with Ce(IV)-Dicarboxylic Acid Redox System: Effect of Chain Length Between the Carboxyl Groups. International Journal of Polymer Analysis and Characterization, 2002, 7, 263-272.	1.9	4
178	Electroinduced dispersion polymerization of acrylonitrile in the presence of poly(acrylic acid) and catalytic amount of CE(IV). Journal of Applied Polymer Science, 2002, 84, 723-728.	2.6	4
179	Electroiniated cationic polymerization in the presence of addition-fragmentation agents. Polymer Bulletin, 2002, 49, 217-223.	3.3	3
180	Electrografting of 3-methyl thiophene and carbazole random copolymer onto carbon fiber: characterization by FTIR-ATR, SEM, EDX. Surface and Coatings Technology, 2002, 160, 227-238.	4.8	36

#	Article	IF	CITATIONS
181	Spectroelectrochemistry of pyrrole oligomers in the presence of acrylamide. Polymer International, 2002, 51, 594-600.	3.1	9
182	Description of the turbidity measurements near the phase transition temperature of poly(N-isopropyl) Tj ETQq(turbidity. European Polymer Journal, 2002, 38, 1305-1310.	0 0 0 rgBT / 5.4	Overlock 10 T 25
183	Title is missing!. Journal of Materials Science, 2002, 37, 461-471.	3.7	32
184	In situ spectroelectrochemistry and colorimetry of poly(pyrrole-acrylamide)s. Journal of Materials Science, 2002, 37, 4609-4614.	3.7	12
185	Electrografting of poly(carbazole-co-acrylamide) onto several carbon fibers. Synthetic Metals, 2001, 123, 411-423.	3.9	34
186	Electrografting of thiophene, carbazole, pyrrole and their copolymers onto carbon fibers: electrokinetic measurements, surface composition and morphology. Synthetic Metals, 2001, 123, 391-401.	3.9	39
187	Spectroelectrochemical study ofN-ethyl-carbazole in the presence of acrylamide. Polymer International, 2001, 50, 271-276.	3.1	12
188	Oxidative polymerization ofN-vinylcarbazole in polymer matrix. Polymer International, 2001, 50, 728-733.	3.1	6
189	Electroinduced copolymerization of acrylonitrile-polyethylene glycol compared with chemical copolymerization. Journal of Applied Polymer Science, 2001, 81, 1410-1419.	2.6	О
190	Electro-induced polymerization of acrylamide initiated by the potassium permanganate-titriplex VI redox system. Journal of Applied Polymer Science, 2001, 81, 1526-1534.	2.6	0
191	Soluble polypyrrole copolymers. Journal of Applied Polymer Science, 2001, 82, 1098-1106.	2.6	33
192	Spectroscopic and Electrochemical Investigation of Ternary Complexes of D- or L-Aspartic Acid Containing Polyacrylamides-Cu ²⁺ -Bovine Serum Albumin and Their Radiostability. Applied Biochemistry and Biotechnology, 2001, 90, 23-36.	2.9	1
193	Electrografting of poly (carbazole-co-acrylamide) onto highly oriented pyrolytic graphite. A cyclovoltammetric, atomic force microscopic and ellipsometric study. Surface and Coatings Technology, 2001, 145, 164-175.	4.8	21
194	Solvent effect on methyl methacrylate polymerization by cerium. Macromolecular Chemistry and Physics, 2000, 201, 2742-2746.	2.2	1
195	Electrosynthesis and study of carbazole–acrylamide copolymer electrodes. Polymer, 2000, 41, 839-847.	3.8	31
196	N-Vinylcarbazole-Acrylamide Copolymer Electrodes Electrochemical Response to Dopamine. Journal of the Electrochemical Society, 2000, 147, 3771.	2.9	11
197	The optical, thermal and electrochemical properties of co-electropolymerised films of acrylamide and carbazole. Synthetic Metals, 2000, 110, 165-174.	3.9	18
198	An Electrochemical Study of Homopolymer, Copolymer and Composite Electrodes of Polypyrrole and Polycarbazoles. International Journal of Polymer Analysis and Characterization, 1999, 5, 157-169.	1.9	21

#	Article	IF	CITATIONS
199	Corrosion Inhibition and Photoactivity Behavior of N-Substituted Polycarbazole-Coated Natural Pyrite Electrode. Corrosion, 1999, 55, 661-666.	1.1	3
200	Interpretation of the chain structures of PMMAs, PANs and PAAms obtained by using Ce(IV) and KMnO4 in combination with NTA and DTPA as initiator systems by FTIR spectroscopic analysis. Polymer, 1999, 40, 7409-7415.	3.8	4
201	Redox polymerization. Progress in Polymer Science, 1999, 24, 1149-1204.	24.7	302
202	A quantum mechanical approach to electrochemical behavior of spirochromics. International Journal of Quantum Chemistry, 1999, 75, 111-117.	2.0	5
203	Electrochemically induced redox polymerization of acrylamide. Journal of Applied Polymer Science, 1999, 72, 861-869.	2.6	12
204	Synthesis and electrochemical polymerization of ter-arenes based onN-ethyl carbazole and thiophene. Journal of Polymer Science Part A, 1999, 37, 379-381.	2.3	22
205	Interaction of metal ions with polypyrrole on polyacrylic acid matrix. Journal of Polymer Science Part A, 1999, 37, 1115-1123.	2.3	15
206	Electroinduced polymerization of acrylonitrile in the presence of Ce(IV). Journal of Polymer Science Part A, 1999, 37, 2319-2327.	2.3	10
207	Electro-induced oxidative polymerization ofN-vinylcarbazole. Polymers for Advanced Technologies, 1999, 10, 135-140.	3.2	15
208	Electrochemical polymerization of pyrrole in acrylamide solution. Synthetic Metals, 1999, 98, 177-182.	3.9	20
209	Chemical and electrochemical polymerisation of pyrrole in the presence of N-substituted carbazoles. Synthetic Metals, 1999, 107, 7-17.	3.9	55
210	Electroâ€induced oxidative polymerization of Nâ€vinylcarbazole. Polymers for Advanced Technologies, 1999, 10, 135-140.	3.2	1
211	Fluorescence and Turbidimetry Study of Complexation of Human Serum Albumin with Polycations. Journal of Bioactive and Compatible Polymers, 1997, 12, 231-244.	2.1	7
212	Water-soluble polypyrroles by matrix polymerization: Interpolymer complexes. Journal of Polymer Science Part A, 1997, 35, 1255-1263.	2.3	23
213	Radical polymerization of acrylamide initiated by ceric ammonium nitrate-methionine redox initiator system. Journal of Applied Polymer Science, 1997, 63, 1643-1648.	2.6	10
214	Oxidative polymerization ofN-substituted carbazoles. Polymers for Advanced Technologies, 1997, 8, 556-562.	3.2	45
215	Ring opening process of some spirochromenes by photoproduced HCl in poly(N-vinyl carbazole). Polymers for Advanced Technologies, 1997, 8, 563-567.	3.2	13
216	Electrochemical reduction and oxidation of some photochromic compounds. Electrochimica Acta, 1997, 42, 3629-3635.	5.2	7

#	Article	IF	CITATIONS
217	Immune Response to 17β-Estradiol in Polyelectrolyte Complex: Antigen Specificity and Affinity of Hybridoma Clones. Hybridoma, 1996, 15, 233-238.	0.6	11
218	Structural Definitions for Soluble Portions of Polyacrylamides Synthesized with Ce(IV)-Chelating Agent Redox Systems. Polymer International, 1996, 40, 179-185.	3.1	10
219	The polymerization of acrylamide initiated with Ce(IV) and KMnO4 redox systems in the presence of glycine. Journal of Applied Polymer Science, 1996, 60, 759-765.	2.6	31
220	Aqueous polymerization of acrylamide by electrolitically generated KMnO4 organic acid redox systems. Journal of Applied Polymer Science, 1996, 62, 111-116.	2.6	9
221	The complex formation between polyacrylamide containing glycine end groups and bovine serium albumin in the presence of copper (II) in neutral aqueous media. Colloid and Polymer Science, 1996, 274, 418-427.	2.1	13
222	Effects of Cu2+ on stability and composition of water soluble ternary polyacrylic acid-Cu2+-protein complexes against radiation damage. Polymer Bulletin, 1996, 36, 623-627.	3.3	5
223	The polymerization of acrylamide initiated with Ce(IV) and KMnO4 redox systems in the presence of glycine. Journal of Applied Polymer Science, 1996, 60, 759-765.	2.6	0
224	The Ternary Complexes of Bovine Serum Albumin and Polyacrylamide Derivatives in the Presence Copper Ions in Neutral Water. Journal of Bioactive and Compatible Polymers, 1995, 10, 121-134.	2.1	12
225	Oxidative polymerization of pyrrole in polymer matrix. Journal of Polymer Science Part A, 1995, 33, 1581-1587.	2.3	27
226	Potentiometric determination of the molecular weight of polymers. Polymer Bulletin, 1994, 32, 91-95.	3.3	11
227	Polypyrrole synthezited with oxidative cerium(IV) ions. Polymer Bulletin, 1994, 33, 535-540.	3.3	26
228	Conductometric determination of the end group ionization in acrylamide and acrylonitrile polymers initiated by carboxylic acids. European Polymer Journal, 1994, 30, 149-152.	5.4	17
229	Block/graft copolymer synthesis via ceric salt. Angewandte Makromolekulare Chemie, 1994, 214, 19-28.	0.2	17
230	Title is missing!. Angewandte Makromolekulare Chemie, 1993, 213, 55-63.	0.2	19
231	Polyaminocarboxylic acids–Ce(IV) redox systems as an initiator in acrylamide polymerization. Journal of Applied Polymer Science, 1993, 47, 1643-1648.	2.6	43
232	Quantitative conversion of poly(acrylamide) into poly(vinylamine) by a modified Hofmann degradation. Reactive & Functional Polymers, 1993, 21, 135-139.	0.8	5
233	Estimation of the average structural parameters from asphaltites and oil shales-pyrolysis products by 1H and 13C NMR spectroscopy. Fuel Processing Technology, 1992, 32, 151-158.	7.2	6
234	Polymerization of acrylamide by electrolytically generated Ce(IV)-organic acid redox systems. Angewandte Makromolekulare Chemie, 1992, 198, 191-198.	0.2	30

#	Article	IF	CITATIONS
235	Polymerization of acrylamide initiated with electrogenerated cerium (IV) in the presence of EDTA. Journal of Applied Polymer Science, 1992, 44, 877-881.	2.6	45
236	Nonaqueous potentiometry for analyses of nitrogen bases from asphaltite and oil shale pyrolysis products. Journal of Analytical and Applied Pyrolysis, 1990, 17, 227-235.	5.5	6
237	Effect of acrylamide concentration on the kinetics of oxidation of tartaric acid by cerium(IV) in sulfuric-perchloric acid media. Journal of Solution Chemistry, 1990, 19, 901-910.	1.2	7
238	Copolymer of ketonic resin–polyacrylonitrile. Journal of Applied Polymer Science, 1990, 39, 1657-1663.	2.6	33
239	Non-aqueous potentiometry of nitrogen containing compounds in chlorobenzene and chlorobenzene-acetic anhydride mixture. Fresenius Zeitschrift Für Analytische Chemie, 1987, 328, 663-664.	0.8	2
240	Kinetics of Ce(IV) oxidation of α-keto acids in sulfuric-perchloric acid media. International Journal of Chemical Kinetics, 1985, 17, 1333-1345.	1.6	11
241	Characterization of pyrolysis products of harbolite and Avgamasya asphaltites: comparison with solvent extracts. Fuel, 1982, 61, 346-350.	6.4	16
242	The nature and origin of harbolite and a related asphaltite from southeastern Turkey. Chemical Geology, 1981, 34, 151-164.	3.3	31
243	Metal-ion oxidative decarboxylations. 10. Substituent effects in the cerium(IV)-benzilic acids reaction. Journal of Organic Chemistry, 1977, 42, 2069-2073.	3.2	16
244	Metal-ion oxidative decarboxylations. 9. Reaction of benzilic acid with cerium(IV) in acidic perchlorate and sulfate media. Journal of Organic Chemistry, 1977, 42, 2063-2068.	3.2	29
245	Solvent dielectric effect on electrochemical properties of 3,4-propylenedioxythiophene. Journal of Electrochemical Science and Engineering, 0, , .	3.5	0
246	Polyelectrolyte Complexes: Immunology Applications. , 0, , 6150-6157.		0
247	Effect of supporting electrolyte on capacitance and morphology of electrodeposited poly(3,4-propylenedioxythiophene) derivatives bearing reactive functional groups. Molecular Systems Design and Engineering, 0, , .	3.4	2
248	Polypyrrole doped graphene nanocomposites as advanced positive electrodes for vanadium redox flow battery. Journal of Materials Science: Materials in Electronics, 0, , .	2.2	0