Caroline Rémond

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1203226/publications.pdf

Version: 2024-02-01

24 papers 528 citations

687363 13 h-index 23 g-index

24 all docs

24 docs citations

times ranked

24

737 citing authors

#	Article	IF	CITATIONS
1	Circular Economy Applied to Organic Residues and Wastewater: Research Challenges. Waste and Biomass Valorization, 2022, 13, 1267-1276.	3.4	26
2	Co-elicitation of lignocelluloytic enzymatic activities and metabolites production in an Aspergillus-Streptomyces co-culture during lignocellulose fractionation. Current Research in Microbial Sciences, 2022, 3, 100108.	2.3	9
3	Culturable and metagenomic approaches of wheat bran and wheat straw phyllosphere's highlight new lignocellulolytic microorganisms. Letters in Applied Microbiology, 2022, 74, 840-850.	2.2	7
4	Draft Genome Sequence of the Lignocellulolytic and Thermophilic Bacterium Thermobacillus xylanilyticus XE. Microbiology Resource Announcements, 2022, 11, e0093421.	0.6	3
5	Protein-Rich Agro-Industrial Co-products are Key Substrates for Growth of Chromobacterium vaccinii and its Violacein Bioproduction. Waste and Biomass Valorization, 2022, 13, 4459-4468.	3.4	3
6	Production of tailored xylo-oligosaccharides from beechwood xylan by different enzyme membrane reactors and evaluation of their prebiotic activity. Biochemical Engineering Journal, 2022, 185, 108494.	3.6	8
7	An Integrated Enzymatic Approach to Produce Pentyl Xylosides and Glucose/Xylose Laurate Esters From Wheat Bran. Frontiers in Bioengineering and Biotechnology, 2021, 9, 647442.	4.1	5
8	Screening New Xylanase Biocatalysts from the Mangrove Soil Diversity. Microorganisms, 2021, 9, 1484.	3.6	3
9	Valorisation of wheat bran to produce natural pigments using selected microorganisms. Journal of Biotechnology, 2021, 339, 81-92.	3.8	17
10	Enzymatic Production of Xylo-oligosaccharides from Destarched Wheat Bran and the Impact of Their Degree of Polymerization and Substituents on Their Utilization as a Carbon Source by Probiotic Bacteria. Journal of Agricultural and Food Chemistry, 2021, 69, 13217-13226.	5.2	3
11	Streptomyces silvae sp. nov., isolated from forest soil. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	1.7	5
12	d-Xylose and l-arabinose laurate esters: Enzymatic synthesis, characterization and physico-chemical properties. Enzyme and Microbial Technology, 2018, 112, 14-21.	3.2	24
13	Sequential and simultaneous strategies for biorefining of wheat straw using room temperature ionic liquids, xylanases and cellulases. Bioresource Technology, 2018, 251, 280-287.	9.6	39
14	A novel and integrative process: From enzymatic fractionation of wheat bran with a hemicellulasic cocktail to the recovery of ferulic acid by weak anion exchange resin. Industrial Crops and Products, 2017, 105, 148-155.	5.2	29
15	Testing scientific models using Qualitative Reasoning: Application to cellulose hydrolysis. Scientific Reports, 2017, 7, 14122.	3.3	2
16	The use of thermostable bacterial hemicellulases improves the conversion of lignocellulosic biomass to valuable molecules. Applied Microbiology and Biotechnology, 2016, 100, 7577-7590.	3.6	25
17	Contrasted enzymatic cocktails reveal the importance of cellulases and hemicellulases activity ratios for the hydrolysis of cellulose in presence of xylans. AMB Express, 2016, 6, 24.	3.0	21
18	Engineering the hydrophobic residues of a GH11 xylanase impacts its adsorption onto lignin and its thermostability. Enzyme and Microbial Technology, 2015, 81, 47-55.	3.2	17

#	Article	IF	CITATION
19	Chemoenzymatic synthesis of "click―xylosides and xylobiosides from lignocellulosic biomass. RSC Advances, 2014, 4, 9330.	3.6	8
20	The hemicellulolytic enzyme arsenal of Thermobacillus xylanilyticus depends on the composition of biomass used for growth. Microbial Cell Factories, 2012, 11, 159.	4.0	29
21	Enzymatic synthesis of alkyl \hat{l}^2 -d-xylosides and oligoxylosides from xylans and from hydrothermally pretreated wheat bran. Green Chemistry, 2011, 13, 2380.	9.0	42
22	A thermostable feruloyl-esterase from the hemicellulolytic bacterium Thermobacillus xylanilyticus releases phenolic acids from non-pretreated plant cell walls. Applied Microbiology and Biotechnology, 2011, 90, 541-552.	3.6	38
23	In Vitro Model Assemblies To Study the Impact of Ligninâ°Carbohydrate Interactions on the Enzymatic Conversion of Xylan. Biomacromolecules, 2009, 10, 2489-2498.	5.4	40
24	Impact and efficiency of GH10 and GH11 thermostable endoxylanases on wheat bran and alkali-extractable arabinoxylans. Carbohydrate Research, 2004, 339, 2529-2540.	2.3	125