
Thomas L King

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/120315/publications.pdf Version: 2024-02-01

THOMAS L KINC

#	Article	IF	CITATIONS
1	Biodegradation Potential of Bacillus sp. PAH-2 on PAHs for Oil-Contaminated Seawater. Molecules, 2022, 27, 687.	3.8	16
2	DBWM: A diluted bitumen weathering model. Marine Pollution Bulletin, 2022, 175, 113372.	5.0	2
3	Impact of mixing and resting times on the droplet size distribution and the petroleum hydrocarbons' concentration in diluted bitumen-based water-accommodated fractions (WAFs). Chemosphere, 2022, , 133807.	8.2	3
4	Formation of oil-particle aggregates: Particle penetration and impact of particle properties and particle-to-oil concentration ratios. Science of the Total Environment, 2021, 760, 144047.	8.0	23
5	Transport of oil droplets from a jet in crossflow: Dispersion coefficients and Vortex trapping. Ocean Modelling, 2021, 158, 101736.	2.4	9
6	<i>In situ</i> microcosms deployed at the coast of British Columbia (Canada) to study dilbit weathering and associated microbial communities under marine conditions. FEMS Microbiology Ecology, 2021, 97, .	2.7	7
7	Experimental Investigation of Oil Droplet Size Distribution in Underwater Oil and Oil-Air Jet. Marine Technology Society Journal, 2021, 55, 196-209.	0.4	6
8	Modeling oil dispersion under breaking waves. Part II:ÂCoupling Lagrangian particle tracking with population balance model. Environmental Fluid Mechanics, 2020, 20, 1553-1578.	1.6	12
9	Canadian bitumen is engineered for transport, but the type of product produced can affect spill contingency planning. Environmental Sciences: Processes and Impacts, 2020, 22, 863-872.	3.5	7
10	Hydrodynamics and dilution of an oil jet in crossflow: The role of small-scale motions from laboratory experiment and large eddy simulations. International Journal of Heat and Fluid Flow, 2020, 85, 108634.	2.4	13
11	Measuring the fate of different diluted bitumen products in coastal surface waters. Marine Pollution Bulletin, 2020, 153, 111003.	5.0	22
12	Oil Droplet Dispersion under a Deep-Water Plunging Breaker: Experimental Measurement and Numerical Modeling. Journal of Marine Science and Engineering, 2020, 8, 230.	2.6	15
13	Inorganic nutrients have a significant, but minimal, impact on a coastal microbial community's response to fresh diluted bitumen. Marine Pollution Bulletin, 2019, 139, 381-389.	5.0	15
14	Influence of Climatic Parameters on Changes in the Density and Viscosity of Diluted Bitumen after a Spill. Journal of Environmental Science and Pollution Research, 2019, 5, 373-382.	0.1	6
15	Was the Deepwater Horizon Well Discharge Churn Flow? Implications on the Estimation of the Oil Discharge and Droplet Size Distribution. Geophysical Research Letters, 2018, 45, 2396-2403.	4.0	29
16	Impact of particle concentration and out-of-range sizes on the measurements of the LISST. Measurement Science and Technology, 2018, 29, 055302.	2.6	12
17	Oil Droplets Transport Under a Deepâ€Water Plunging Breaker: Impact of Droplet Inertia. Journal of Geophysical Research: Oceans, 2018, 123, 9082-9100.	2.6	19
18	Estimating the Usefulness of Chemical Dispersant to Treat Surface Spills of Oil Sands Products. Journal of Marine Science and Engineering, 2018, 6, 128.	2.6	12

THOMAS L KING

#	Article	IF	CITATIONS
19	A Modeling Study on the Oil Spill of M/V Marathassa in Vancouver Harbour. Journal of Marine Science and Engineering, 2018, 6, 106.	2.6	10
20	Oil Droplet Transport under Non-Breaking Waves: An Eulerian RANS Approach Combined with a Lagrangian Particle Dispersion Model. Journal of Marine Science and Engineering, 2018, 6, 7.	2.6	11
21	Droplet and bubble formation of combined oil and gas releases in subsea blowouts. Marine Pollution Bulletin, 2017, 120, 203-216.	5.0	42
22	An oil spill decision matrix in response to surface spills of various bitumen blends. Environmental Sciences: Processes and Impacts, 2017, 19, 928-938.	3.5	15
23	A New Mechanism of Sediment Attachment to Oil in Turbulent Flows: Projectile Particles. Environmental Science & Technology, 2017, 51, 11020-11028.	10.0	35
24	Oil jet with dispersant: Macroâ€scale hydrodynamics and tip streaming. AICHE Journal, 2017, 63, 5222-5234.	3.6	21
25	Settling of dilbit-derived oil-mineral aggregates (OMAs) & transport parameters for oil spill modelling. Marine Pollution Bulletin, 2017, 124, 292-302.	5.0	22
26	Impact of mixing time and energy on the dispersion effectiveness and droplets size of oil. Chemosphere, 2017, 166, 246-254.	8.2	51
27	PREDICTION OF OIL DROPLET MOVEMENT AND SIZE DISTRIBUTION: LAGRANGIAN METHOD AND VDROP-J MODEL. International Oil Spill Conference Proceedings, 2017, 2017, 1194-1211.	0.1	5
28	Effects of tip streaming on the prediction of droplet size distribution in the presence of dispersants during subsea blowouts. International Oil Spill Conference Proceedings, 2017, 2017, 1212-1229.	0.1	1
29	Experimental and numerical investigation of the formation of Oil Particle Aggregates (OPA). International Oil Spill Conference Proceedings, 2017, 2017, 1911-1930.	0.1	1
30	Interaction of gas bubbles and oil droplets in subsea oil and gas blowouts – a new development of VDROP-J model International Oil Spill Conference Proceedings, 2017, 2017, 2017-194.	0.1	0
31	Hydrocarbon biodegradation by Arctic sea-ice and sub-ice microbial communities during microcosm experiments, Northwest Passage (Nunavut, Canada). FEMS Microbiology Ecology, 2016, 92, fiw130.	2.7	68
32	Underwater oil jet: Hydrodynamics and droplet size distribution. Chemical Engineering Journal, 2016, 299, 292-303.	12.7	46
33	A-DROP: A predictive model for the formation of oil particle aggregates (OPAs). Marine Pollution Bulletin, 2016, 106, 245-259.	5.0	69
34	Evolution of bubble size distribution from gas blowout in shallow water. Journal of Geophysical Research: Oceans, 2016, 121, 1573-1599.	2.6	33
35	Reynolds number scaling to predict droplet size distribution in dispersed and undispersed subsurface oil releases. Marine Pollution Bulletin, 2016, 113, 332-342.	5.0	11
36	Oil droplets transport due to irregular waves: Development of large-scale spreading coefficients. Marine Pollution Bulletin, 2016, 104, 279-289.	5.0	35

THOMAS L KING

#	Article	IF	CITATIONS
37	Bitumen on Water: Charred Hay as a PFD (Petroleum Flotation Device). Journal of Marine Science and Engineering, 2015, 3, 1244-1259.	2.6	0
38	Simulation of scenarios of oil droplet formation from the Deepwater Horizon blowout. Marine Pollution Bulletin, 2015, 101, 304-319.	5.0	75
39	Fate of Surface Spills of Cold Lake Blend Diluted Bitumen Treated with Dispersant and Mineral Fines in a Wave Tank. Environmental Engineering Science, 2015, 32, 250-261.	1.6	24
40	Evolution of droplets in subsea oil and gas blowouts: Development and validation of the numerical model VDROP-J. Marine Pollution Bulletin, 2014, 83, 58-69.	5.0	124
41	Assessing weathered Endicott oil biodegradation in brackish water. Marine Pollution Bulletin, 2014, 86, 102-110.	5.0	9
42	Flume tank studies to elucidate the fate and behavior of diluted bitumen spilled at sea. Marine Pollution Bulletin, 2014, 83, 32-37.	5.0	57
43	VDROP: A comprehensive model for droplet formation of oils and gases in liquids - Incorporation of the interfacial tension and droplet viscosity. Chemical Engineering Journal, 2014, 253, 93-106.	12.7	114
44	A numerical model to simulate the droplet formation process resulting from the release of diluted bitumen products in marine environment. International Oil Spill Conference Proceedings, 2014, 2014, 449-462.	0.1	4
45	Interfacial film formation: Influence on oil spreading rates in lab basin tests and dispersant effectiveness testing in a wave tank. Marine Pollution Bulletin, 2013, 71, 83-91.	5.0	6
46	Effects of temperature and wave conditions on chemical dispersion efficacy of heavy fuel oil in an experimental flow-through wave tank. Marine Pollution Bulletin, 2010, 60, 1550-1559.	5.0	36
47	Evaluating Chemical Dispersant Efficacy in an Experimental Wave Tank: 2—Significant Factors Determining <i>In Situ</i> Oil Droplet Size Distribution. Environmental Engineering Science, 2009, 26, 1407-1418.	1.6	51
48	Assessment of chemical dispersant effectiveness in a wave tank under regular non-breaking and breaking wave conditions. Marine Pollution Bulletin, 2008, 56, 903-912.	5.0	59
49	Effects of chemical dispersants and mineral fines on crude oil dispersion in a wave tank under breaking waves. Marine Pollution Bulletin, 2007, 54, 983-993.	5.0	61
50	Trends in the Distribution of PCBs Compared to PACs in Sediments and Mussels of Halifax Harbour. Water Quality Research Journal of Canada, 2002, 37, 413-428.	2.7	4