Ian B Malone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1203107/publications.pdf

Version: 2024-02-01

257357 206029 2,552 79 24 48 citations h-index g-index papers 87 87 87 5309 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Associations of \hat{I}^2 -Amyloid and Vascular Burden With Rates of Neurodegeneration in Cognitively Normal Members of the 1946 British Birth Cohort. Neurology, 2022, 99, .	1.5	12
2	Familial British dementia: a clinical and multi-modal imaging case study. Journal of Neurology, 2022, 269, 3926-3930.	1.8	2
3	A populationâ€based study of head injury, cognitive function and pathological markers. Annals of Clinical and Translational Neurology, 2021, 8, 842-856.	1.7	5
4	Investigating the relationship between BMI across adulthood and late life brain pathologies. Alzheimer's Research and Therapy, 2021, 13, 91.	3.0	7
5	Sex-related differences in whole brain volumes at age 70 in association with hyperglycemia during adult life. Neurobiology of Aging, 2021, 112, 161-169.	1.5	1
6	Visuomotor integration deficits are common to familial and sporadic preclinical Alzheimer's disease. Brain Communications, 2021, 3, fcab003.	1.5	8
7	Dissociable effects of APOE $\hat{l}\mu 4$ and \hat{l}^2 -amyloid pathology on visual working memory. Nature Aging, 2021, 1, 1002-1009.	5.3	16
8	Presumed small vessel disease, imaging and cognition markers in the Alzheimer's Disease Neuroimaging Initiative. Brain Communications, 2021, 3, fcab226.	1.5	2
9	Losartan to slow the progression of mild-to-moderate Alzheimer's disease through angiotensin targeting: the RADAR RCT. Efficacy and Mechanism Evaluation, 2021, 8, 1-72.	0.9	3
10	Loss and dispersion of superficial white matter in Alzheimer's disease: a diffusion MRI study. Brain Communications, 2021, 3, fcab272.	1.5	18
11	Baseline MRI and CSF measurements in cognitively normal individuals as prognostic markers of progression to mild cognitive impairment. Alzheimer's and Dementia, 2021, 17, .	0.4	O
12	Atrophy and partial volume related bias in cortical region of interest NODDI metrics. Alzheimer's and Dementia, 2021, 17, .	0.4	0
13	Fixelâ€based analysis of the effect of amyloid beta on white matter tracts in neurologically normal 70 year olds. Alzheimer's and Dementia, 2021, 17, .	0.4	O
14	Associations Between Vascular Risk Across Adulthood and Brain Pathology in Late Life. JAMA Neurology, 2020, 77, 175.	4.5	55
15	Increased variability in reaction time is associated with amyloid beta pathology at age 70. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2020, 12, e12076.	1.2	8
16	Plasma phosphoâ€ŧau181 in over 400 cognitively healthy 69―to 71â€yearâ€olds: Associations with cerebral amyloid, structural imaging and cognition in the Insight 46 study. Alzheimer's and Dementia, 2020, 16, e037848.	0.4	0
17	Vascular risk factors and amyloid pathology: Additive or interactive associations?. Alzheimer's and Dementia, 2020, 16, e037922.	0.4	0
18	Uncovering superficial white matter changes in youngâ€onset Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e039746.	0.4	0

#	Article	IF	CITATIONS
19	Accelerated forgetting is sensitive to βâ€amyloid pathology and cerebral atrophy in cognitively normal 72â€yearâ€olds. Alzheimer's and Dementia, 2020, 16, e040987.	0.4	0
20	APOEâ€Îµ4 carriers have superior recall on the †What was where?' visual shortâ€term memory binding test at age 70, despite a detrimental effect of βâ€amyloid. Alzheimer's and Dementia, 2020, 16, e041090.	0.4	4
21	Lifetime cigarette smoking and laterâ€life brain health: The populationâ€based 1946 British Birth Cohort. Alzheimer's and Dementia, 2020, 16, e041111.	0.4	1
22	Amyloid Pattern Similarity Score (AMPSS): A reference region free measure of amyloid PET deposition in Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e042673.	0.4	2
23	Cerebral amyloid and white matter hyperintensity volume are independently associated with rates of cerebral atrophy in Insight 46, a subâ€study of the 1946 British birth cohort. Alzheimer's and Dementia, 2020, 16, e044924.	0.4	O
24	Midâ€life blood pressure and microstructural white matter: Findings from the 1946 British birth cohort. Alzheimer's and Dementia, 2020, 16, e045707.	0.4	0
25	Serum neurofilament light and whole brain volume associate with machineâ€learning derived brainâ€predicted age in the British 1946 birth cohort. Alzheimer's and Dementia, 2020, 16, e045965.	0.4	1
26	Olfactory testing does not predict \hat{l}^2 -amyloid, MRI measures of neurodegeneration or vascular pathology in the British 1946 birth cohort. Journal of Neurology, 2020, 267, 3329-3336.	1.8	4
27	Automated White Matter Hyperintensity Segmentation Using Bayesian Model Selection: Assessment and Correlations with Cognitive Change. Neuroinformatics, 2020, 18, 429-449.	1.5	14
28	Pure tone audiometry and cerebral pathology in healthy older adults. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 172-176.	0.9	16
29	Associations between blood pressure across adulthood and late-life brain structure and pathology in the neuroscience substudy of the 1946 British birth cohort (Insight 46): an epidemiological study. Lancet Neurology, The, 2019, 18, 942-952.	4.9	178
30	Hippocampal subfield volumes and pre-clinical Alzheimer's disease in 408 cognitively normal adults born in 1946. PLoS ONE, 2019, 14, e0224030.	1.1	26
31	Cognition at age 70. Neurology, 2019, 93, e2144-e2156.	1.5	37
32	ICâ€Pâ€007: CENTILOID SCALE TRANSFORMATION OF FLORBETAPIR DATA ACQUIRED ON A PET/MR SCANNER. Alzheimer's and Dementia, 2019, 15, P17.	0.4	0
33	O4â€13â€01: EARLY ADULTHOOD VASCULAR RISK STRONGLY PREDICTS BRAIN VOLUMES AND WHITE MATTER DISEASE, BUT NOT AMYLOID STATUS, AT AGE 69–71 YEARS: EVIDENCE FROM A BRITISH BIRTH COHORT. Alzheimer's and Dementia, 2019, 15, P1269.	0.4	O
34	Incidental findings on brain imaging and blood tests: results from the first phase of Insight 46, a prospective observational substudy of the 1946 British birth cohort. BMJ Open, 2019, 9, e029502.	0.8	16
35	ICâ€Pâ€006: LONGITUDINAL RATES OF AMYLOID ACCUMULATION IN A 70â€YEAR OLD BRITISH BIRTH COHORT. Alzheimer's and Dementia, 2019, 15, P16.	0.4	O
36	Differences in hippocampal subfield volume are seen in phenotypic variants of early onset Alzheimer's disease. Neurolmage: Clinical, 2019, 21, 101632.	1.4	37

3

#	Article	IF	CITATIONS
37	Title is missing!. , 2019, 14, e0224030.		O
38	Title is missing!. , 2019, 14, e0224030.		0
39	Title is missing!. , 2019, 14, e0224030.		O
40	Title is missing!. , 2019, 14, e0224030.		0
41	Cortical microstructure in young onset Alzheimer's disease using neurite orientation dispersion and density imaging. Human Brain Mapping, 2018, 39, 3005-3017.	1.9	87
42	Presymptomatic atrophy in autosomal dominant Alzheimer's disease: AÂserial magnetic resonance imaging study. Alzheimer's and Dementia, 2018, 14, 43-53.	0.4	42
43	Patterns of progressive atrophy vary with age in Alzheimer's disease patients. Neurobiology of Aging, 2018, 63, 22-32.	1.5	31
44	P2â€390: DIFFERENTIAL HIPPOCAMPAL SUBFIELD LOSS IN DIFFERENT PHENOTYPES OF YOUNG ONSET ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P850.	0.4	1
45	P3â€437: LONGITUDINAL CORTICAL THICKNESS IN SPORADIC YOUNG ONSET ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P1281.	0.4	O
46	P1â€474: SURFACEâ€BASED ANALYSIS OF CORTICAL GREY MATTER MICROSTRUCTURE IN YOUNGâ€ONSET ALZHEIMER'S DISEASE USING NEURITE ORIENTATION DISPERSION AND DENSITY IMAGING (NODDI). Alzheimer's and Dementia, 2018, 14, P505.	0.4	0
47	O2â€05â€01: INFLUENCES OF BLOOD PRESSURE AND BLOOD PRESSURE TRAJECTORIES ON CEREBRAL PATHOLO AT AGE 70: RESULTS FROM A BRITISH BIRTH COHORT. Alzheimer's and Dementia, 2018, 14, P626.	P6.4	1
48	A Comparison of Accelerated and Non-accelerated MRI Scans for Brain Volume and Boundary Shift Integral Measures of Volume Change: Evidence from the ADNI Dataset. Neuroinformatics, 2017, 15, 215-226.	1.5	14
49	White matter hyperintensities are associated with disproportionate progressive hippocampal atrophy. Hippocampus, 2017, 27, 249-262.	0.9	62
50	Serum neurofilament light in familial Alzheimer disease. Neurology, 2017, 89, 2167-2175.	1.5	204
51	The Rationale and Design of the Reducing Pathology in Alzheimer's Disease through Angiotensin TaRgeting (RADAR) Trial. Journal of Alzheimer's Disease, 2017, 61, 803-814.	1.2	28
52	[ICâ€Pâ€004]: A COMPARISON OF TECHNIQUES FOR QUANTIFYING AMYLOID BURDEN ON A COMBINED PET/MR SCANNER. Alzheimer's and Dementia, 2017, 13, P12.	0.4	0
53	Study protocol: Insight 46 – a neuroscience sub-study of the MRC National Survey of Health and Development. BMC Neurology, 2017, 17, 75.	0.8	64
54	[P2–545]: VASCULAR AND EARLY LIFE INFLUENCES ON CEREBROVASCULAR DISEASE IN INSIGHT 46: A SUB‧TUDY OF THE MRC NATIONAL SURVEY OF HEALTH AND DEVELOPMENT (NSHD) BRITISH BIRTH COHORT. Alzheimer's and Dementia, 2017, 13, P851.	0.4	0

#	Article	IF	CITATIONS
55	[P3–348]: EXPLORING THE POPULATION PREVALENCE OF βâ€AMYLOID BURDEN: AN ANALYSIS OF 250 INDIVIDUALS BORN IN MAINLAND BRITAIN IN THE SAME WEEK IN 1946. Alzheimer's and Dementia, 2017, 13, P1088.	0.4	0
56	[P3–373]: A COMPARISON OF TECHNIQUES FOR QUANTIFYING AMYLOID BURDEN ON A COMBINED PET/MR SCANNER. Alzheimer's and Dementia, 2017, 13, P1100.	0.4	0
57	[P1–465]: PROGRESSIVE CALLOSAL ATROPHY WITH STABLE MEMORY IMPAIRMENT IN FAMILIAL BRITISH DEMENTIA. Alzheimer's and Dementia, 2017, 13, P465.	0.4	O
58	[O4–02–04]: SERUM NEUROFILAMENT LIGHT CONCENTRATION IN FAMILIAL ALZHEIMER's DISEASE AND ASSOCIATION WITH MARKERS OF DISEASE STAGE AND SEVERITY. Alzheimer's and Dementia, 2017, 13, P1230.	0.4	0
59	[O5–05–04]: BRAIN VOLUME, CEREBRAL βâ€AMYLOID DEPOSITION, AND AGEING: A STUDY OF OVER 200 INDIVIDUALS BORN IN THE SAME WEEK IN 1946. Alzheimer's and Dementia, 2017, 13, P1464.	0.4	0
60	Reversible frontotemporal brain sagging syndrome. Neurology, 2015, 85, 833-833.	1.5	6
61	Accurate automatic estimation of total intracranial volume: A nuisance variable with less nuisance. Neurolmage, 2015, 104, 366-372.	2.1	371
62	Magnetic resonance imaging in Alzheimer's Disease Neuroimaging Initiative 2. Alzheimer's and Dementia, 2015, 11, 740-756.	0.4	142
63	Short-interval observational data to inform clinical trial design in Huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 1291-1298.	0.9	22
64	Assessing atrophy measurement techniques in dementia: Results from the MIRIAD atrophy challenge. NeuroImage, 2015, 123, 149-164.	2.1	63
65	Automated Template-Based Hippocampal Segmentations from MRI: The Effects of 1.5T or 3T Field Strength on Accuracy. Neuroinformatics, 2014, 12, 405-412.	1.5	11
66	Profiles of white matter tract pathology in frontotemporal dementia. Human Brain Mapping, 2014, 35, 4163-4179.	1.9	102
67	IC-P-175: LONGITUDINAL VOLUMETRIC AND DIFFUSION TENSOR IMAGING IN FAMILIAL ALZHEIMER'S DISEASE. , 2014, 10, P97-P98.		O
68	O1-07-02: LONGITUDINAL VOLUMETRIC AND DIFFUSION TENSOR IMAGING IN FAMILIAL ALZHEIMER'S DISEASE. , 2014, 10, P141-P142.		0
69	White matter tract signatures of the progressive aphasias. Neurobiology of Aging, 2013, 34, 1687-1699.	1.5	97
70	Evaluation of multi-modal, multi-site neuroimaging measures in Huntington's disease: Baseline results from the PADDINGTON study. NeuroImage: Clinical, 2013, 2, 204-211.	1.4	34
71	An unbiased longitudinal analysis framework for tracking white matter changes using diffusion tensor imaging with application to Alzheimer's disease. Neurolmage, 2013, 72, 153-163.	2.1	111
72	MIRIADâ€"Public release of a multiple time point Alzheimer's MR imaging dataset. NeuroImage, 2013, 70, 33-36.	2.1	111

#	ARTICLE	IF	CITATION
73	Vascular and Alzheimer's disease markers independently predict brain atrophy rate in Alzheimer's Disease Neuroimaging Initiative controls. Neurobiology of Aging, 2013, 34, 1996-2002.	1.5	66
74	The pattern of atrophy in familial Alzheimer disease. Neurology, 2013, 81, 1425-1433.	1.5	67
75	Magnetic resonance imaging evidence for presymptomatic change in thalamus and caudate in familial Alzheimer's disease. Brain, 2013, 136, 1399-1414.	3.7	174
76	The Importance of Group-Wise Registration in Tract Based Spatial Statistics Study of Neurodegeneration: A Simulation Study in Alzheimer's Disease. PLoS ONE, 2012, 7, e45996.	1.1	81
77	Attenuation Correction Methods Suitable for Brain Imaging with a PET/MRI Scanner: A Comparison of Tissue Atlas and Template Attenuation Map Approaches. Journal of Nuclear Medicine, 2011, 52, 1142-1149.	2.8	74
78	A Framework for Using Diffusion Weighted Imaging to Improve Cortical Parcellation. Lecture Notes in Computer Science, 2010, 13, 534-541.	1.0	12
79	Charge transport and efficiency in photovoltaic devices based on polyfluorene blends. , 2004, 5520, 26.		O