
William S Lane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12030834/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A mammalian protein targeted by G1-arresting rapamycin–receptor complex. Nature, 1994, 369, 756-758.	27.8	1,829
2	Role of IRS-2 in insulin and cytokine signalling. Nature, 1995, 377, 173-177.	27.8	834
3	Insulin-stimulated Phosphorylation of a Rab GTPase-activating Protein Regulates GLUT4 Translocation. Journal of Biological Chemistry, 2003, 278, 14599-14602.	3.4	790
4	Predominant naturally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogeneous in size. Nature, 1992, 358, 764-768.	27.8	765
5	The Dermatomyositis-Specific Autoantigen Mi2 Is a Component of a Complex Containing Histone Deacetylase and Nucleosome Remodeling Activities. Cell, 1998, 95, 279-289.	28.9	745
6	Acetylation of the p53 DNA-Binding Domain Regulates Apoptosis Induction. Molecular Cell, 2006, 24, 841-851.	9.7	647
7	HDAC6 Modulates Cell Motility by Altering the Acetylation Level of Cortactin. Molecular Cell, 2007, 27, 197-213.	9.7	626
8	BACH1, a Novel Helicase-like Protein, Interacts Directly with BRCA1 and Contributes to Its DNA Repair Function. Cell, 2001, 105, 149-160.	28.9	606
9	ING Tumor Suppressor Proteins Are Critical Regulators of Chromatin Acetylation Required for Genome Expression and Perpetuation. Molecular Cell, 2006, 21, 51-64.	9.7	589
10	Structural and Functional Conservation of the NuA4 Histone Acetyltransferase Complex from Yeast to Humans. Molecular and Cellular Biology, 2004, 24, 1884-1896.	2.3	516
11	BRCA1 Is Associated with a Human SWI/SNF-Related Complex. Cell, 2000, 102, 257-265.	28.9	504
12	The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature, 1999, 400, 284-288.	27.8	497
13	Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily. Current Biology, 1996, 6, 968-980.	3.9	447
14	A Method to Identify Serine Kinase Substrates. Journal of Biological Chemistry, 2002, 277, 22115-22118.	3.4	442
15	Regulation of Histone Acetylation and Transcription by INHAT, a Human Cellular Complex Containing the Set Oncoprotein. Cell, 2001, 104, 119-130.	28.9	441
16	Convergence of the Fanconi Anemia and Ataxia Telangiectasia Signaling Pathways. Cell, 2002, 109, 459-472.	28.9	421
17	ATM phosphorylation of Nijmegen breakage syndrome protein is required in a DNA damage response. Nature, 2000, 405, 477-482.	27.8	415
18	A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness. Genes and Development, 2000, 14, 1048-1057.	5.9	412

#	Article	IF	CITATIONS
19	Dr1, a TATA-binding protein-associated phosphoprotein and inhibitor of class II gene transcription. Cell, 1992, 70, 477-489.	28.9	389
20	AS160, the Akt substrate regulating GLUT4 translocation, has a functional Rab GTPase-activating protein domain. Biochemical Journal, 2005, 391, 87-93.	3.7	364
21	DNA topoisomerase I is involved in both repression and activation of transcription. Nature, 1993, 365, 227-232.	27.8	361
22	A Novel 160-kDa Phosphotyrosine Protein in Insulin-treated Embryonic Kidney Cells Is a New Member of the Insulin Receptor Substrate Family. Journal of Biological Chemistry, 1997, 272, 21403-21407.	3.4	322
23	Cloning of a human gene encoding the general transcription initiation factor IIB. Nature, 1991, 352, 689-695.	27.8	307
24	The c-MYC Oncoprotein Is a Substrate of the Acetyltransferases hGCN5/PCAF and TIP60. Molecular and Cellular Biology, 2004, 24, 10826-10834.	2.3	299
25	A Human Protein Complex Homologous to the Drosophila MSL Complex Is Responsible for the Majority of Histone H4 Acetylation at Lysine 16. Molecular and Cellular Biology, 2005, 25, 9175-9188.	2.3	292
26	The p400 Complex Is an Essential E1A Transformation Target. Cell, 2001, 106, 297-307.	28.9	282
27	Histone sumoylation is a negative regulator in <i>Saccharomyces cerevisiae</i> and shows dynamic interplay with positive-acting histone modifications. Genes and Development, 2006, 20, 966-976.	5.9	282
28	A core-BRAF35 complex containing histone deacetylase mediates repression of neuronal-specific genes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7420-7425.	7.1	279
29	The 60-kDa Phosphotyrosine Protein in Insulin-treated Adipocytes Is a New Member of the Insulin Receptor Substrate Family. Journal of Biological Chemistry, 1997, 272, 11439-11443.	3.4	264
30	SIRT1 Regulates the Function of the Nijmegen Breakage Syndrome Protein. Molecular Cell, 2007, 27, 149-162.	9.7	260
31	Interaction of the Ski Oncoprotein with Smad3 Regulates TGF-β Signaling. Molecular Cell, 1999, 4, 499-509.	9.7	257
32	Multiple Links between the NuA4 Histone Acetyltransferase Complex and Epigenetic Control of Transcription. Molecular Cell, 2000, 5, 927-937.	9.7	252
33	ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage. EMBO Journal, 2005, 24, 3411-3422.	7.8	221
34	Histone Deacetylase 1 Phosphorylation Promotes Enzymatic Activity and Complex Formation. Journal of Biological Chemistry, 2001, 276, 47733-47741.	3.4	220
35	Rabbit β-Globin Is Extended Beyond Its UGA Stop Codon by Multiple Suppressions and Translational Reading Gapsâ€. Biochemistry, 1998, 37, 10866-10870.	2.5	200
36	Cathepsin L in secretory vesicles functions as a prohormone-processing enzyme for production of the enkephalin peptide neurotransmitter. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9590-9595.	7.1	199

#	Article	IF	CITATIONS
37	Comprehensive Proteomic Analysis of Interphase and Mitotic 14-3-3-binding Proteins. Journal of Biological Chemistry, 2004, 279, 32046-32054.	3.4	195
38	Direct identification of PTEN phosphorylation sites. FEBS Letters, 2002, 528, 145-153.	2.8	193
39	Yeast Enhancer of Polycomb defines global Esa1-dependent acetylation of chromatin. Genes and Development, 2003, 17, 1415-1428.	5.9	187
40	SIRT1 Deacetylates the DNA Methyltransferase 1 (DNMT1) Protein and Alters Its Activities. Molecular and Cellular Biology, 2011, 31, 4720-4734.	2.3	178
41	RBP1 Recruits the mSIN3-Histone Deacetylase Complex to the Pocket of Retinoblastoma Tumor Suppressor Family Proteins Found in Limited Discrete Regions of the Nucleus at Growth Arrest. Molecular and Cellular Biology, 2001, 21, 2918-2932.	2.3	177
42	A Protein Phosphatase Methylesterase (PME-1) Is One of Several Novel Proteins Stably Associating with Two Inactive Mutants of Protein Phosphatase 2A. Journal of Biological Chemistry, 1999, 274, 14382-14391.	3.4	171
43	WD40 Repeat Proteins Striatin and S/G2 Nuclear Autoantigen Are Members of a Novel Family of Calmodulin-binding Proteins That Associate with Protein Phosphatase 2A. Journal of Biological Chemistry, 2000, 275, 5257-5263.	3.4	169
44	A Candidate X-linked Mental Retardation Gene Is a Component of a New Family of Histone Deacetylase-containing Complexes. Journal of Biological Chemistry, 2003, 278, 7234-7239.	3.4	162
45	Isolation of human NURF: a regulator of Engrailed gene expression. EMBO Journal, 2003, 22, 6089-6100.	7.8	151
46	The critical active-site amine of the human 8-oxoguanine DNA glycosylase, hOgg1: direct identification, ablation and chemical reconstitution. Chemistry and Biology, 1997, 4, 693-702.	6.0	150
47	Human Elongator facilitates RNA polymerase II transcription through chromatin. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1241-1246.	7.1	149
48	Purification and Characterization of a Human Factor That Assembles and Remodels Chromatin. Journal of Biological Chemistry, 2000, 275, 14787-14790.	3.4	146
49	Rapamycin and FK506 binding proteins (immunophilins). Journal of the American Chemical Society, 1991, 113, 1409-1411.	13.7	145
50	HnRNP L stimulates splicing of the eNOS gene by binding to variable-length CA repeats. Nature Structural Biology, 2003, 10, 33-37.	9.7	143
51	A rapamycin-selective 25-kDa immunophilin. Biochemistry, 1992, 31, 2427-2434.	2.5	135
52	Inhibition of GLUT4 Translocation by Tbc1d1, a Rab GTPase-activating Protein Abundant in Skeletal Muscle, Is Partially Relieved by AMP-activated Protein Kinase Activation. Journal of Biological Chemistry, 2008, 283, 9187-9195.	3.4	133
53	ATM activates p53 by regulating MDM2 oligomerization and E3 processivity. EMBO Journal, 2009, 28, 3857-3867.	7.8	133
54	Biochemical characterization of symbiosome membrane proteins fromMedicago truncatula root nodules. Electrophoresis, 2004, 25, 519-531.	2.4	132

#	Article	IF	CITATIONS
55	Sortilin Is the Major 110-kDa Protein in GLUT4 Vesicles from Adipocytes. Journal of Biological Chemistry, 1998, 273, 3582-3587.	3.4	126
56	The Yeast NuA4 and Drosophila MSL Complexes Contain Homologous Subunits Important for Transcription Regulation. Journal of Biological Chemistry, 2001, 276, 3484-3491.	3.4	123
57	Proteomic analysis of sperm regions that mediate sperm-egg interactions. Proteomics, 2006, 6, 3533-3543.	2.2	111
58	Functional Analysis of the Subunits of the Chromatin Assembly Factor RSF. Molecular and Cellular Biology, 2003, 23, 6759-6768.	2.3	105
59	latheo Encodes a Subunit of the Origin Recognition Complex and Disrupts Neuronal Proliferation and Adult Olfactory Memory When Mutant. Neuron, 1999, 23, 45-54.	8.1	104
60	The ATDC (TRIM29) Protein Binds p53 and Antagonizes p53-Mediated Functions. Molecular and Cellular Biology, 2010, 30, 3004-3015.	2.3	98
61	Role of an ING1 Growth Regulator in Transcriptional Activation and Targeted Histone Acetylation by the NuA4 Complex. Molecular and Cellular Biology, 2001, 21, 7629-7640.	2.3	90
62	A Mammalian Homolog of Yeast MOB1 Is Both a Member and a Putative Substrate of Striatin Family-Protein Phosphatase 2A Complexes. Journal of Biological Chemistry, 2001, 276, 24253-24260.	3.4	83
63	SIRT1 Negatively Regulates the Activities, Functions, and Protein Levels of hMOF and TIP60. Molecular and Cellular Biology, 2012, 32, 2823-2836.	2.3	81
64	Repair of oxidatively damaged guanine in Saccharomyces cerevisiae by an alternative pathway. Current Biology, 1998, 8, 393-404.	3.9	79
65	Activator-Specific Requirement of Yeast Mediator Proteins for RNA Polymerase II Transcriptional Activation. Molecular and Cellular Biology, 1999, 19, 979-988.	2.3	78
66	Insulin-stimulated Phosphorylation of the Rab GTPase-activating Protein TBC1D1 Regulates GLUT4 Translocation. Journal of Biological Chemistry, 2009, 284, 30016-30023.	3.4	75
67	Functional Characterization of Core Promoter Elements: DPE-Specific Transcription Requires the Protein Kinase CK2 and the PC4 Coactivator. Molecular Cell, 2005, 18, 471-481.	9.7	63
68	A signaling network stimulated by β ₂ integrin promotes the polarization of lytic granules in cytotoxic cells. Science Signaling, 2014, 7, ra96.	3.6	59
69	Association of Acyl-CoA Synthetase-1 with GLUT4-containing Vesicles. Journal of Biological Chemistry, 1998, 273, 3132-3135.	3.4	53
70	Diurnal Rhythms Spatially and Temporally Organize Autophagy. Cell Reports, 2019, 26, 1880-1892.e6.	6.4	47
71	Insulin Receptor Substrate 4 Associates with the Protein IRAS. Journal of Biological Chemistry, 2002, 277, 19439-19447.	3.4	44
72	Proteomics of Neuroendocrine Secretory Vesicles Reveal Distinct Functional Systems for Biosynthesis and Exocytosis of Peptide Hormones and Neurotransmitters. Journal of Proteome Research, 2007, 6, 1652-1665.	3.7	44

#	Article	IF	CITATIONS
73	Histone Deacetylase 10 Regulates DNA Mismatch Repair and May Involve the Deacetylation of MutS Homolog 2. Journal of Biological Chemistry, 2015, 290, 22795-22804.	3.4	43
74	Novel insulin-elicited phosphoproteins in adipocytes. Cellular Signalling, 2005, 17, 59-66.	3.6	36
75	A Naturally Processed Mitochondrial Self-Peptide in Complex with Thymic Mhc Molecules Functions as a Selecting Ligand for a Viral-Specific T Cell Receptor. Journal of Experimental Medicine, 2001, 194, 883-892.	8.5	31
76	Adipocytes contain a novel complex similar to the tuberous sclerosis complex. Cellular Signalling, 2006, 18, 1626-1632.	3.6	19
77	Cloning and preliminary characterization of a 105 kDa protein with an N-terminal kinase-like domain. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2000, 1517, 148-152.	2.4	18
78	The 47kDa Akt substrate associates with phosphodiesterase 3B and regulates its level in adipocytes. Biochemical and Biophysical Research Communications, 2006, 342, 1218-1222.	2.1	15
79	pCyP B: A Chloroplast-Localized, Heat Shock-Responsive Cyclophilin from Fava Bean. Plant Cell, 1994, 6, 885.	6.6	12
80	A Phospho-SIM in the Antiviral Protein PML is Required for Its Recruitment to HSV-1 Genomes. Cells, 2014, 3, 1131-1158.	4.1	3