List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12030130/publications.pdf

Version: 2024-02-01

83	13,224	52	81
papers	citations	h-index	g-index
84	84	84	9136
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Advances towards Understanding the Mechanism of Action of the Hsp90 Complex. Biomolecules, 2022, 12, 600.	1.8	24
2	Recognition of BRAF by CDC37 and Re-Evaluation of the Activation Mechanism for the Class 2 BRAF-L597R Mutant. Biomolecules, 2022, 12, 905.	1.8	2
3	Two-colour single-molecule photoinduced electron transfer fluorescence imaging microscopy of chaperone dynamics. Nature Communications, 2021, 12, 6964.	5.8	14
4	The â€~Complex World' of the Hsp90 Co-chaperone R2TP. Heat Shock Proteins, 2019, , 297-316.	0.2	0
5	Dihydropyridines Allosterically Modulate Hsp90 Providing a Novel Mechanism for Heat Shock Protein Co-induction and Neuroprotection. Frontiers in Molecular Biosciences, 2018, 5, 51.	1.6	27
6	HECTD3 Mediates an HSP90-Dependent Degradation Pathway for Protein Kinase Clients. Cell Reports, 2017, 19, 2515-2528.	2.9	23
7	Differential Regulation of G1 CDK Complexes by the Hsp90-Cdc37 Chaperone System. Cell Reports, 2017, 21, 1386-1398.	2.9	49
8	The integrity and organization of the human AIPL1 functional domains is critical for its role as a HSP90-dependent co-chaperone for rod PDE6. Human Molecular Genetics, 2017, 26, 4465-4480.	1.4	18
9	Tumor suppressor Tsc1 is a new Hsp90 coâ€chaperone that facilitates folding of kinase and nonâ€kinase clients. EMBO Journal, 2017, 36, 3650-3665.	3.5	64
10	Regulatory Mechanisms of Hsp90. Biochemistry & Molecular Biology Journal, 2017, 03, 2.	0.3	25
11	The Stoichiometric Interaction of the Hsp90-Sgt1-Rar1 Complex by CD and SRCD Spectroscopy. Frontiers in Molecular Biosciences, 2017, 4, 95.	1.6	12
12	The structure of FKBP38 in complex with the MEEVD tetratricopeptide binding-motif of Hsp90. PLoS ONE, 2017, 12, e0173543.	1.1	25
13	Dihydropyridine Derivatives Modulate Heat Shock Responses and have a Neuroprotective Effect in a Transgenic Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2016, 53, 557-571.	1.2	34
14	Mechanisms of Hsp90 regulation. Biochemical Journal, 2016, 473, 2439-2452.	1.7	223
15	The FNIP co-chaperones decelerate the Hsp90 chaperone cycle and enhance drug binding. Nature Communications, 2016, 7, 12037.	5.8	56
16	Cooperation of local motions in the Hsp90 molecular chaperone ATPase mechanism. Nature Chemical Biology, 2016, 12, 628-635.	3.9	68
17	"Tuning―the ATPase Activity of Hsp90. , 2016, , 469-490.		О
18	Tah1 helix-swap dimerization prevents mixed Hsp90 co-chaperone complexes. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 1197-1206.	2.5	13

#	Article	IF	CITATIONS
19	c-Abl Mediated Tyrosine Phosphorylation of Aha1 Activates Its Co-chaperone Function in Cancer Cells. Cell Reports, 2015, 12, 1006-1018.	2.9	54
20	Asymmetric Hsp90ÂN Domain SUMOylation Recruits Aha1 and ATP-Competitive Inhibitors. Molecular Cell, 2014, 53, 317-329.	4.5	101
21	Structural Basis for Phosphorylation-Dependent Recruitment of Tel2 to Hsp90 by Pih1. Structure, 2014, 22, 805-818.	1.6	86
22	Synthesis of 19-substituted geldanamycins with altered conformations and their binding to heat shock protein Hsp90. Nature Chemistry, 2013, 5, 307-314.	6.6	78
23	ATP-competitive inhibitors block protein kinase recruitment to the Hsp90-Cdc37 system. Nature Chemical Biology, 2013, 9, 307-312.	3.9	132
24	Post-translational modification and conformational state of Heat Shock Protein 90 differentially affect binding of chemically diverse small molecule inhibitors. Oncotarget, 2013, 4, 1065-1074.	0.8	58
25	Charged linker sequence modulates eukaryotic heat shock protein 90 (Hsp90) chaperone activity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2937-2942.	3.3	107
26	Dynamic Tyrosine Phosphorylation Modulates Cycling of the HSP90-P50CDC37-AHA1 Chaperone Machine. Molecular Cell, 2012, 47, 434-443.	4.5	113
27	Structure of the TPR Domain of AIP: Lack of Client Protein Interaction with the C-Terminal $\hat{l}\pm -7$ Helix of the TPR Domain of AIP Is Sufficient for Pituitary Adenoma Predisposition. PLoS ONE, 2012, 7, e53339.	1.1	67
28	The â€~active life' of Hsp90 complexes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 614-623.	1.9	159
29	Co-Crystalization and In Vitro Biological Characterization of 5-Aryl-4-(5-Substituted-2-4-Dihydroxyphenyl)-1,2,3-Thiadiazole Hsp90 Inhibitors. PLoS ONE, 2012, 7, e44642.	1.1	18
30	Targeting the Hsp90 Molecular Chaperone with Novel Macrolactams. Synthesis, Structural, Binding, and Cellular Studies. ACS Chemical Biology, 2011, 6, 1339-1347.	1.6	27
31	Threonine 22 Phosphorylation Attenuates Hsp90 Interaction with Cochaperones and Affects Its Chaperone Activity. Molecular Cell, 2011, 41, 672-681.	4.5	146
32	Features of the <i>Streptomyces hygroscopicus </i> HtpG reveal how partial geldanamycin resistance can arise with mutation to the ATP binding pocket of a eukaryotic Hsp90. FASEB Journal, 2011, 25, 3828-3837.	0.2	32
33	A combinatorial method to enable detailed investigation of protein–protein interactions. Future Medicinal Chemistry, 2011, 3, 271-282.	1.1	5
34	A simple yeast-based system for analyzing inhibitor resistance in the human cancer drug targets Hsp90 \hat{l} ±/ \hat{l} ². Biochemical Pharmacology, 2010, 79, 1581-1588.	2.0	20
35	Inhibition of Hsp90 with Resorcylic Acid Macrolactones: Synthesis and Binding Studies. Chemistry - A European Journal, 2010, 16, 10366-10372.	1.7	22
36	Swe1Wee1-Dependent Tyrosine Phosphorylation of Hsp90 Regulates Distinct Facets of Chaperone Function. Molecular Cell, 2010, 37, 333-343.	4.5	165

#	Article	IF	CITATIONS
37	Structural Basis for Assembly of Hsp90-Sgt1-CHORD Protein Complexes: Implications for Chaperoning of NLR Innate Immunity Receptors. Molecular Cell, 2010, 39, 269-281.	4.5	108
38	Hsp90 charged-linker truncation reverses the functional consequences of weakened hydrophobic contacts in the N domain. Nature Structural and Molecular Biology, 2009, 16, 1141-1147.	3.6	78
39	The Hsp90 mosaic: a picture emerges. Nature Structural and Molecular Biology, 2009, 16, 2-6.	3.6	40
40	A common conformationally coupled ATPase mechanism for yeast and human cytoplasmic HSP90s. FEBS Journal, 2009, 276, 199-209.	2.2	51
41	Structural Basis of the Radicicol Resistance Displayed by a Fungal Hsp90. ACS Chemical Biology, 2009, 4, 289-297.	1.6	53
42	Strategies for Stalling Malignancy: Targeting Cancers Addiction to Hsp90. Current Topics in Medicinal Chemistry, 2009, 9, 1352-1368.	1.0	25
43	Structural and functional coupling of Hsp90- and Sgt1-centred multi-protein complexes. EMBO Journal, 2008, 27, 2789-2798.	3 . 5	104
44	4,5-Diarylisoxazole Hsp90 Chaperone Inhibitors: Potential Therapeutic Agents for the Treatment of Cancer. Journal of Medicinal Chemistry, 2008, 51, 196-218.	2.9	386
45	Hsp90-Dependent Activation of Protein Kinases Is Regulated by Chaperone-Targeted Dephosphorylation of Cdc37. Molecular Cell, 2008, 31, 886-895.	4.5	184
46	Optimizing Natural Products by Biosynthetic Engineering: Discovery of Nonquinone Hsp90 Inhibitors. Journal of Medicinal Chemistry, 2008, 51, 5494-5497.	2.9	79
47	Molecular Characterization of Macbecin as an Hsp90 Inhibitor. Journal of Medicinal Chemistry, 2008, 51, 2853-2857.	2.9	56
48	The Hsp90 molecular chaperone: an open and shut case for treatment. Biochemical Journal, 2008, 410, 439-453.	1.7	410
49	The ATPase-dependent chaperoning activity of Hsp90a regulates thick filament formation and integration during skeletal muscle myofibrillogenesis. Development (Cambridge), 2008, 135, 1147-1156.	1.2	94
50	NVP-AUY922: A Novel Heat Shock Protein 90 Inhibitor Active against Xenograft Tumor Growth, Angiogenesis, and Metastasis. Cancer Research, 2008, 68, 2850-2860.	0.4	433
51	Chaperone ligand-discrimination by the TPR-domain protein Tah1. Biochemical Journal, 2008, 413, 261-268.	1.7	46
52	Inhibition of the heat shock protein 90 molecular chaperone in vitro and in vivo by novel, synthetic, potent resorcinylic pyrazole/isoxazole amide analogues. Molecular Cancer Therapeutics, 2007, 6, 1198-1211.	1.9	141
53	In vitro Biological Characterization of a Novel, Synthetic Diaryl Pyrazole Resorcinol Class of Heat Shock Protein 90 Inhibitors. Cancer Research, 2007, 67, 2206-2216.	0.4	111
54	Structure and Mechanism of the Hsp90 Molecular Chaperone Machinery. Annual Review of Biochemistry, 2006, 75, 271-294.	5.0	988

#	Article	IF	Citations
55	Structure of an Hsp90-Cdc37-Cdk4 Complex. Molecular Cell, 2006, 23, 697-707.	4.5	288
56	Crystal structure of an Hsp90–nucleotide–p23/Sba1 closed chaperone complex. Nature, 2006, 440, 1013-1017.	13.7	857
57	Inhibition of Hsp90 with Synthetic Macrolactones: Synthesis and Structural and Biological Evaluation of Ring and Conformational Analogs of Radicicol. Chemistry and Biology, 2006, 13, 1203-1215.	6.2	64
58	Combinatorial Domain Hunting: An effective approach for the identification of soluble protein domains adaptable to high-throughput applications. Protein Science, 2006, 15, 2356-2365.	3.1	34
59	Expressed in the Yeast Saccharomyces cerevisiae , Human ERK5 Is a Client of the Hsp90 Chaperone That Complements Loss of the Slt2p (Mpk1p) Cell Integrity Stress-Activated Protein Kinase. Eukaryotic Cell, 2006, 5, 1914-1924.	3.4	60
60	The identification, synthesis, protein crystal structure and in vitro biochemical evaluation of a new 3,4-diarylpyrazole class of Hsp90 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 3338-3343.	1.0	228
61	A Two-Hybrid Screen of the Yeast Proteome for Hsp90 Interactors Uncovers a Novel Hsp90 Chaperone Requirement in the Activity of a Stress-Activated Mitogen-Activated Protein Kinase, Slt2p (Mpk1p). Eukaryotic Cell, 2005, 4, 849-860.	3.4	159
62	Chaperoned Ubiquitylationâ€"Crystal Structures of the CHIP U Box E3 Ubiquitin Ligase and a CHIP-Ubc13-Uev1a Complex. Molecular Cell, 2005, 20, 525-538.	4.5	382
63	Investigating the protein-protein interactions of the yeast Hsp90 chaperone system by two-hybrid analysis: potential uses and limitations of this approach. Cell Stress and Chaperones, 2004, 9, 359.	1.2	41
64	Co-chaperone Regulation of Conformational Switching in the Hsp90 ATPase Cycle. Journal of Biological Chemistry, 2004, 279, 51989-51998.	1.6	183
65	Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery. EMBO Journal, 2004, 23, 511-519.	3.5	164
66	Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery. EMBO Journal, 2004, 23, 1402-1410.	3 . 5	179
67	High-throughput screening assay for inhibitors of heat-shock protein 90 ATPase activity. Analytical Biochemistry, 2004, 327, 176-183.	1.1	192
68	The Mechanism of Hsp90 Regulation by the Protein Kinase-Specific Cochaperone p50cdc37. Cell, 2004, 116, 87-98.	13.5	319
69	Sensitivity to Hsp90-targeting drugs can arise with mutation to the Hsp90 chaperone, cochaperones and plasma membrane ATP binding cassette transporters of yeast. FEBS Journal, 2003, 270, 4689-4695.	0.2	52
70	Yeast is selectively hypersensitised to heat shock protein 90 (Hsp90)-targetting drugs with heterologous expression of the human $Hsp90\hat{l}^2$, a property that can be exploited in screens for new $Hsp90$ chaperone inhibitors. Gene, 2003, 302, 165-170.	1.0	51
71	Structural and Functional Analysis of the Middle Segment of Hsp90: Implications for ATP Hydrolysis and Client Protein and Cochaperone Interactions. Molecular Cell, 2003, 11, 647-658.	4.5	434
72	Structure and Functional Relationships of Hsp90. Current Cancer Drug Targets, 2003, 3, 301-323.	0.8	242

#	Article	IF	CITATIONS
73	Regulation of Hsp90 ATPase Activity by the Co-chaperone Cdc37p/p50. Journal of Biological Chemistry, 2002, 277, 20151-20159.	1.6	246
74	Activation of the ATPase Activity of Hsp90 by the Stress-Regulated Cochaperone Aha1. Molecular Cell, 2002, 10, 1307-1318.	4.5	487
75	Backbone resonance assignments of the 25kD N-terminal ATPase domain from the Hsp90 chaperone. Journal of Biomolecular NMR, 2002, 23, 327-328.	1.6	19
76	Structure, function, and mechanism of the Hsp90 molecular chaperone. Advances in Protein Chemistry, 2001, 59, 157-186.	4.4	172
77	Structure and in vivo function of Hsp90. Current Opinion in Structural Biology, 2000, 10, 46-51.	2.6	294
78	Structural Basis for Inhibition of the Hsp90 Molecular Chaperone by the Antitumor Antibiotics Radicicol and Geldanamycin. Journal of Medicinal Chemistry, 1999, 42, 260-266.	2.9	948
79	The Hsp90 of Candida albicans can confer Hsp90 functions in Saccharomyces cerevisiae: a potential model for the processes that generate immunogenic fragments of this molecular chaperone in C. albicans infections. Microbiology (United Kingdom), 1999, 145, 3455-3463.	0.7	24
80	Identification and Structural Characterization of the ATP/ADP-Binding Site in the Hsp90 Molecular Chaperone. Cell, 1997, 90, 65-75.	13.5	1,203
81	A molecular clamp in the crystal structure of the N-terminal domain of the yeast Hsp90 chaperone. Nature Structural Biology, 1997, 4, 477-482.	9.7	214
82	Synthesis of a modified gene encoding human ornithine transcarbamylase for expression in mammalian mitochondrial and universal translation systems: a novel approach towards correction of a genetic defect. Gene, 1996, 169, 251-255.	1.0	14
83	Recursive PCR: a novel technique for total gene synthesis. Protein Engineering, Design and Selection, 1992, 5, 827-829.	1.0	217