Klaus Huber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1202831/publications.pdf

Version: 2024-02-01

		147801	88630
102	5,174	31	70
papers	citations	h-index	g-index
105	105	105	6294
103	103	103	0294
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework. Chemistry of Materials, 2009, 21, 1410-1412.	6.7	1,069
2	Controlling Zeolitic Imidazolate Framework Nano- and Microcrystal Formation: Insight into Crystal Growth by Time-Resolved In Situ Static Light Scattering. Chemistry of Materials, 2011, 23, 2130-2141.	6.7	747
3	Trapping Metal-Organic Framework Nanocrystals:Â Anin-SituTime-Resolved Light Scattering Study on the Crystal Growth of MOF-5 in Solution. Journal of the American Chemical Society, 2007, 129, 5324-5325.	13.7	273
4	Upper Critical Solution Temperature of Poly(<i>N</i> -acryloyl glycinamide) in Water: A Concealed Property. Macromolecules, 2012, 45, 374-384.	4.8	208
5	Fast Nucleation and Growth of ZIFâ€8 Nanocrystals Monitored by Timeâ€Resolved In Situ Smallâ€Angle and Wideâ€Angle Xâ€Ray Scattering. Angewandte Chemie - International Edition, 2011, 50, 8067-8071.	13.8	198
6	Lactide Polymerisation with Airâ€Stable and Highly Active Zinc Complexes with Guanidine–Pyridine Hybrid Ligands. Chemistry - A European Journal, 2009, 15, 2362-2376.	3.3	148
7	Hydrodynamic and thermodynamic behavior of short-chain polystyrene in toluene and cyclohexane at 34.5.degree.C. Macromolecules, 1985, 18, 1461-1467.	4.8	128
8	Nanocrystals of [Cu3(btc)2] (HKUST-1): a combined time-resolved light scattering and scanning electron microscopy study. Chemical Communications, 2009, , 1031.	4.1	106
9	Calcium-induced shrinking of polyacrylate chains in aqueous solution. The Journal of Physical Chemistry, 1993, 97, 9825-9830.	2.9	98
10	Dynamic light scattering from regular star-branched molecules. Macromolecules, 1984, 17, 541-548.	4.8	93
11	Ca2+and Cu2+Induced Conformational Changes of Sodium Polymethacrylate in Dilute Aqueous Solution. Macromolecules, 1998, 31, 728-733.	4.8	76
12	Calcium Induced Shrinking of NaPA Chains:Â A SANS Investigation of Single Chain Behavior. Macromolecules, 2003, 36, 9564-9573.	4.8	76
13	[Bis(guanidine)]zinc Complexes and Their Application in Lactide Polymerisation. European Journal of Inorganic Chemistry, 2007, 2007, 5645-5651.	2.0	73
14	Dilute solution behaviour of sodium polyacrylate chains in aqueous NaCl solutions. Polymer, 2003, 44, 7131-7141.	3.8	68
15	Shift of the photonic band gap in two photonic crystal/liquid crystal composites. Applied Physics Letters, 2002, 80, 1885-1887.	3.3	67
16	The distribution of Sr 2+ counterions around polyacrylate chains analyzed by anomalous small-angle X-ray scattering. Europhysics Letters, 2004, 66, 331-337.	2.0	67
17	Structureâ^Property Relationship in Stimulus-Responsive Bolaamphiphile Hydrogels. Langmuir, 2007, 23, 7715-7723.	3.5	61
18	Evaluation of the Particle Growth of Amorphous Calcium Carbonate in Water by Means of the Porod Invariant from SAXS. Langmuir, 2010, 26, 17405-17412.	3 . 5	57

#	Article	IF	CITATIONS
19	A comparative experimental study of the aggregation of Acid Red 266 in aqueous solution by use of 19F-NMR, UV/Vis spectroscopy and static light scattering. Physical Chemistry Chemical Physics, 2000, 2, 3687-3695.	2.8	52
20	Zeolitic imidazolate framework-71 nanocrystals and a novel SOD-type polymorph: solution mediated phase transformations, phase selection via coordination modulation and a density functional theory derived energy landscape. Dalton Transactions, 2014, 43, 3528.	3.3	52
21	Osmotic second virial coefficient and two-parameter theories. Macromolecules, 1987, 20, 1400-1402.	4.8	47
22	Shrinking of anionic polyacrylate coils induced by Ca2+, Sr2+ and Ba2+: A combined light scattering and ASAXS study. European Physical Journal E, 2006, 21, 99-110.	1.6	46
23	Controlled Formation of Ag Nanoparticles by Means of Long-Chain Sodium Polyacrylates in Dilute Solution. Journal of the American Chemical Society, 2007, 129, 1089-1094.	13.7	46
24	Probing the extent of the Sr2+ ion condensation to anionic polyacrylate coils: A quantitative anomalous small-angle x-ray scattering study. Journal of Chemical Physics, 2007, 127, 154908.	3.0	42
25	Analysis of the Nucleation and Growth of Amorphous CaCO ₃ by Means of Time-Resolved Static Light Scattering. Langmuir, 2008, 24, 8262-8271.	3.5	42
26	Particle scattering factor of pearl necklace chains. Macromolecular Symposia, 2004, 211, 25-42.	0.7	40
27	Insight into Fast Nucleation and Growth of Zeolitic Imidazolate Framework-71 by In Situ Time-Resolved Light and X-ray Scattering Experiments. Crystal Growth and Design, 2016, 16, 2002-2010.	3.0	38
28	Remarks on A2, hydrodynamic coil expansion, and concentration dependence of the diffusion coefficient for polystyrene in toluene. Macromolecules, 1985, 18, 2743-2747.	4.8	37
29	A Novel Lubricant Based on Covalent Functionalized Graphene Oxide Quantum Dots. Scientific Reports, 2018, 8, 5843.	3.3	34
30	Formation of Ca ²⁺ -Induced Intermediate Necklace Structures of Polyacrylate Chains. Macromolecules, 2009, 42, 4288-4299.	4.8	33
31	Coil-Collapse and Coil-Aggregation due to the Interaction of Cu ²⁺ and Ca ²⁺ lons with Anionic Polyacylate Chains in Dilute Solution. Macromolecules, 2010, 43, 3027-3035.	4.8	32
32	Modulated Formation of MOF-5 Nanoparticlesâ€"A SANS Analysis. Journal of Physical Chemistry C, 2012, 116, 6127-6135.	3.1	31
33	Lateral association and elongation of vimentin intermediate filament proteins: A time-resolved light-scattering study. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11152-11157.	7.1	31
34	Characterization of Worm-like Micelles Containing Solubilized Dye-Molecules by Light Scattering Techniques. Journal of Colloid and Interface Science, 1994, 164, 370-381.	9.4	30
35	Self-localization of polyacrylic acid molecules on polar ZnO(0001)–Zn surfaces. Physical Chemistry Chemical Physics, 2011, 13, 12959.	2.8	30
36	On Protein Folding in Crowded Conditions. Journal of Physical Chemistry Letters, 2019, 10, 7650-7656.	4.6	29

#	Article	IF	CITATIONS
37	Coil Dimensions of Polystyrene Chains in Colloidâ 'Polymer Mixtures at the Protein Limit:Â A SANS Study. Macromolecules, 2005, 38, 9783-9793.	4.8	27
38	Scattering behavior of wormlike star macromolecules. Macromolecules, 1989, 22, 3332-3336.	4.8	26
39	Insight into the Final Step of the Supramolecular Buildup of Eumelanin. Langmuir, 2017, 33, 6895-6901.	3.5	26
40	New experiments for the quantification of counterion condensation. Current Opinion in Colloid and Interface Science, 2012, 17, 64-73.	7.4	25
41	Contraction and Coagulation of Spherical Polyelectrolyte Brushes in the Presence of Ag ⁺ , Mg ²⁺ , and Ca ²⁺ Cations. Macromolecules, 2016, 49, 7460-7468.	4.8	25
42	Mixtures of Polyacrylic Acid and Nonionic Surfactants at the Water/Air Interface. Journal of Colloid and Interface Science, 1994, 164, 463-470.	9.4	24
43	Silsesquioxane Molecules and Polystyrene Chains as a Model System for Colloidâ^'Polymer Mixtures in the Protein Limit. Macromolecules, 2005, 38, 151-159.	4.8	24
44	In situ static and dynamic light scattering and scanning electron microscopy study on the crystallization of the dense zinc imidazolate framework ZIF-zni. Physical Chemistry Chemical Physics, 2012, 14, 511-521.	2.8	24
45	Formfactors of Hollow and Massive Rectangular Parallelepipeds at Variable Degree of Anisometry. Zeitschrift Fur Physikalische Chemie, 2012, 226, 837-854.	2.8	23
46	The Molecular Mechanism of Polymer Formation of Farnesylated Human Guanylate-binding Protein 1. Journal of Molecular Biology, 2020, 432, 2164-2185.	4.2	23
47	Small-angle neutron scattering of dilute polystyrene chains at the protein limit of a colloid-polymer mixture. Journal of Chemical Physics, 2005, 123, 014903.	3.0	22
48	SAXS and ASAXS on Dilute Sodium Polyacrylate Chains Decorated with Lead Ions. Macromolecules, 2013, 46, 3570-3580.	4.8	22
49	Time-Resolved Recording of Ionic Dyestuff Aggregation by Static Light Scatteringâ€. Langmuir, 2000, 16, 3010-3018.	3.5	21
50	Mechanistic Studies of Silica Polymerization from Supersaturated Aqueous Solutions by Means of Time-Resolved Light Scattering. Langmuir, 2014, 30, 12664-12674.	3.5	21
51	Monitoring the Coordination Modulator Shell at MOF Nanocrystals. Crystal Growth and Design, 2014, 14, 4859-4863.	3.0	21
52	Monte Carlo calculations in comparison to neutron scattering studies: 1. Linear chains. Polymer, 1987, 28, 863-872.	3.8	20
53	Aggregation of a Pseudoisocyanine Chloride in Aqueous NaCl Solution. Langmuir, 2003, 19, 5223-5232.	3.5	19
54	Impact of Sodium Polyacrylate on the Amorphous Calcium Carbonate Formation from Supersaturated Solution. Langmuir, 2012, 28, 3593-3605.	3.5	19

#	Article	IF	CITATIONS
55	Interactions in mixed interfaces of binary surfactant solutions. Journal of Colloid and Interface Science, 1991, 147, 321-332.	9.4	18
56	Formation of Branched Calixarene Aggregates Time-Resolved Static Light Scattering Study. Journal of the American Chemical Society, 2004, 126, 9276-9282.	13.7	18
57	Self-Assembly of Fibrinogen in Aqueous, Thrombin-Free Solutions of Variable Ionic Strengths. Langmuir, 2019, 35, 12113-12122.	3.5	18
58	Colloid–polymer mixtures in solution with refractive index matched acrylate colloids. Journal of Colloid and Interface Science, 2004, 279, 447-457.	9.4	16
59	Monte Carlo calculations in comparison to neutron scattering studies: 2. Global dimensions of 12-arm stars. Polymer, 1987, 28, 1990-1996.	3.8	15
60	Monte Carlo calculations in comparison to neutron scattering studies: 3. On the structure of 12-arm star molecules. Polymer, 1987, 28, 1997-2003.	3.8	15
61	Specific Interactions of Ag ⁺ Ions with Anionic Polyacrylate Chains in Dilute Solution. Macromolecules, 2014, 47, 8002-8011.	4.8	14
62	Liquid-liquid phase separation in dilute solutions of poly(styrene sulfonate) with multivalent cations: Phase diagrams, chain morphology, and impact of temperature. Journal of Chemical Physics, 2018, 148, 014901.	3.0	14
63	Time resolved structure analysis of growing \hat{I}^2 -amyloid fibers. Journal of Structural Biology, 2007, 159, 71-81.	2.8	13
64	Temperature-Induced Collapse of Alkaline Earth Cationâ^'Polyacrylate Anion Complexes. Journal of Physical Chemistry B, 2007, 111, 10431-10437.	2.6	13
65	Effect of ionic strength on the structure and elongational kinetics of vimentin filaments. Soft Matter, 2018, 14, 8445-8454.	2.7	13
66	Hydrogen-Bond-Induced Heteroassembly in Binary Colloidal Systems. Langmuir, 2010, 26, 13815-13822.	3.5	12
67	Co-Aggregation of Two Anionic Azo Dyestuffs at a Well-Defined Stoichiometry. Journal of Physical Chemistry B, 2013, 117, 8611-8619.	2.6	11
68	Morphology of Blends with Cross-Linked PMMA Microgels and Linear PMMA Chains. Macromolecules, 2013, 46, 9091-9103.	4.8	11
69	Silica Polymerization from Supersaturated Dilute Aqueous Solutions in the Presence of Alkaline Earth Salts. Langmuir, 2017, 33, 6071-6083.	3.5	11
70	Reaction enthalpy from the binding of multivalent cations to anionic polyelectrolytes in dilute solutions. Journal of Chemical Physics, 2018, 148, 114906.	3.0	11
71	Controlling Self-Assembly with Light and Temperature. Langmuir, 2020, 36, 223-231.	3.5	11
72	Static and dynamic scattering from block copolymeric ring molecules. Macromolecules, 1988, 21, 1305-1309.	4.8	10

#	Article	IF	CITATIONS
73	Conformation and Interactions of Polystyrene and Fullerenes in Dilute to Semidilute Solutions. Macromolecules, 2014, 47, 6113-6120.	4.8	10
74	First cumulant of the dynamic structure factor for rigid rings. Polymer, 1987, 28, 1987-1989.	3.8	9
75	Model of Polydisperse Wormlike Stars and Its Application to Dyestuff Aggregates. Langmuir, 2002, 18, 7049-7056.	3.5	9
76	Metastable metal imidazolates: development of targeted syntheses by combining experimental and theoretical investigations of the formation mechanisms. Zeitschrift Fur Kristallographie - Crystalline Materials, 2014, 229, 807-822.	0.8	9
77	Block copolymers with rigid and flexible segments. Macromolecules, 1989, 22, 2750-2755.	4.8	8
78	Selfâ€Assembly of Pseudoâ€Isocyanine Chloride as a Sensor for Macromolecular Crowding In Vitro and In Vivo. Chemistry - A European Journal, 2020, 26, 7041-7050.	3.3	8
79	Multiresponsive Polymer Nanoparticles Based on Disulfide Bonds. Macromolecules, 2021, 54, 2899-2911.	4.8	8
80	The ZIF system zinc(II) 4,5-dichoroimidazolate: theoretical and experimental investigations of the polymorphism and crystallization mechanisms. Zeitschrift Fur Kristallographie - Crystalline Materials, 2017, 232, 77-90.	0.8	7
81	Secondary Particle Formation during the Nonaqueous Synthesis of Metal Oxide Nanocrystals. Langmuir, 2018, 34, 12834-12844.	3.5	7
82	Polyacrylates in the presence of an extraordinary monovalent cationâ€"Solution behavior and metal nanoparticle formation. Journal of Chemical Physics, 2018, 149, 163318.	3.0	7
83	Insight into Fast Nucleation and Growth of Zeolitic Imidazolate Framework-71 by In Situ Static Light Scattering at Variable Temperature and Kinetic Modeling. Crystal Growth and Design, 2018, 18, 4653-4661.	3.0	7
84	Self-Assembled Fibrinogen Hydro- and Aerogels with Fibrin-like 3D Structures. Biomacromolecules, 2021, 22, 4084-4094.	5.4	7
85	Quasi-elastic scattering by semiflexible rings. Polymer, 1990, 31, 1811-1815.	3.8	6
86	Molecular Recognition with 2,4-Diaminotriazine-Functionalized Colloids. Langmuir, 2011, 27, 12851-12858.	3.5	6
87	Invertible Micelles Based on Ion-Specific Interactions of Sr2+ and Ba2+ with Double Anionic Block Copolyelectrolytes. Macromolecules, 2019, 52, 8759-8770.	4.8	6
88	Contrast variation of micelles composed of Ca2+ and block copolymers of two negatively charged polyelectrolytes. Colloid and Polymer Science, 2020, 298, 663-679.	2.1	6
89	Preparation of Positively and Negatively Charged Organic Colloids from a Single Precursor. Macromolecular Chemistry and Physics, 2003, 204, 2204-2211.	2.2	5
90	Surface modification of epoxy-functionalized acrylate colloids. Polymers for Advanced Technologies, 2005, 16, 38-41.	3.2	5

#	Article	IF	CITATION
91	Ion-selective binding as a new trigger for micellization of block copolyelectrolytes with two anionic blocks. Soft Matter, 2019, 15, 8266-8271.	2.7	5
92	Kinetic and Structural Features of a Dyestuff Coaggregation Studied by Time-Resolved Static Light Scattering. Journal of Physical Chemistry B, 2013, 117, 15165-15175.	2.6	4
93	Mechanism and equilibrium thermodynamics of H- and J-aggregate formation from pseudo isocyanine chloride in water. Soft Matter, 2021, 17, 8140-8152.	2.7	4
94	Spatial Distribution of Intracellular Ion Concentrations in Aggregateâ€Forming HeLa Cells Analyzed by μâ€XRF Imaging. ChemistryOpen, 2022, 11, e202200024.	1.9	4
95	Coaggregation of Two Anionic Azo Dyestuffs: A Combined Static Light Scattering and Small-Angle X-ray Scattering Study. Journal of Physical Chemistry B, 2014, 118, 7618-7629.	2.6	3
96	Systematic Limitations in Concentration Analysis via Anomalous Small-Angle X-ray Scattering in the Small Structure Limit. Polymers, 2016, 8, 85.	4.5	3
97	Phase Transformation Behavior of Polylactide Probed by Small Angle Light Scattering and Calorimetry. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1483-1495.	2.1	3
98	Thermodynamic Analysis of the Selfâ€Assembly of Pseudo Isocyanine Chloride in the Presence of Crowding Agents. ChemSystemsChem, 2021, 3, e2000051.	2.6	3
99	Adsorption behavior of partially collapsed polyacrylate coils on mica surfaces: A reciprocal space approach. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1553-1561.	2.1	2
100	ZIF-8 Nanocrystal Formation: An In-Situ Synchrotron SAXS/WAXS Study. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2010, 636, 2072-2072.	1.2	0
101	Targeted Synthesis of the Type-A Particle Substructure from Enzymatically Produced Eumelanin. Biomacromolecules, 2022, , .	5.4	0
102	Synthesis and Functionalization of Monodisperse Nanoparticles with High Optical Density Based on Inorganic Networks., 0,, 785-788.		0