Taesung Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12027876/publications.pdf

Version: 2024-02-01

201674 276875 2,361 146 27 41 citations h-index g-index papers 146 146 146 3372 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Lowâ€Temperature Synthesis of Largeâ€Scale Molybdenum Disulfide Thin Films Directly on a Plastic Substrate Using Plasmaâ€Enhanced Chemical Vapor Deposition. Advanced Materials, 2015, 27, 5223-5229.	21.0	180
2	Highly Sensitive and Selective Gas Sensor Using Hydrophilic and Hydrophobic Graphenes. Scientific Reports, 2013, 3, 1868.	3.3	178
3	Graphene based fiber optic surface plasmon resonance for bio-chemical sensor applications. Sensors and Actuators B: Chemical, 2013, 187, 426-433.	7.8	123
4	Kirkendall effect induced bifunctional hybrid electrocatalyst (Co9S8@MoS2/N-doped hollow carbon) for high performance overall water splitting. Journal of Power Sources, 2021, 493, 229688.	7.8	67
5	Low-temperature growth of layered molybdenum disulphide with controlled clusters. Scientific Reports, 2016, 6, 21854.	3.3	59
6	Waferâ€Scale and Lowâ€Temperature Growth of 1Tâ€WS ₂ Film for Efficient and Stable Hydrogen Evolution Reaction. Small, 2020, 16, e1905000.	10.0	53
7	Polypyrrole thin film fiber optic chemical sensor for detection of VOCs. Sensors and Actuators B: Chemical, 2011, 158, 223-228.	7.8	51
8	Chemical and Physical Characteristics of Doxorubicin Hydrochloride Drug-Doped Salmon DNA Thin Films. Scientific Reports, 2015, 5, 12722.	3.3	49
9	Detection of Acetone Vapor Using Graphene on Polymer Optical Fiber. Journal of Nanoscience and Nanotechnology, $2011,11,5939$ - $5943.$	0.9	48
10	A sensitive electrochemical sensor for in vitro detection of parathyroid hormone based on a MoS2-graphene composite. Scientific Reports, 2016, 6, 34587.	3.3	46
11	A sensitive hydrogen peroxide optical sensor based on polysaccharide stabilized silver nanoparticles. RSC Advances, 2013, 3, 22940.	3.6	45
12	Low-temperature wafer-scale growth of MoS2-graphene heterostructures. Applied Surface Science, 2019, 470, 129-134.	6.1	44
13	A conductive copolymer of graphene oxide/poly(1-(3-aminopropyl)pyrrole) and the adsorption of metal ions. Polymer Chemistry, 2014, 5, 4466.	3.9	41
14	A novel nanometric DNA thin film as a sensor for alpha radiation. Scientific Reports, 2013, 3, 2062.	3.3	37
15	Flexible MoS ₂ –Polyimide Electrode for Electrochemical Biosensors and Their Applications for the Highly Sensitive Quantification of Endocrine Hormones: PTH, T3, and T4. Analytical Chemistry, 2020, 92, 6327-6333.	6.5	37
16	Step height removal mechanism of chemical mechanical planarization (CMP) for sub-nano-surface finish. Wear, 2010, 268, 505-510.	3.1	35
17	Low-Temperature Synthesis of Wafer-Scale MoS ₂ –WS ₂ Vertical Heterostructures by Single-Step Penetrative Plasma Sulfurization. ACS Nano, 2021, 15, 707-718.	14.6	34
18	Construction and characterization of Cu ²⁺ , Ni ²⁺ , Zn ²⁺ , and Co ²⁺ modified-DNA crystals. Nanotechnology, 2015, 26, 275604.	2.6	33

#	Article	IF	CITATIONS
19	Sources and Characteristics of Particulate Matter in Subway Tunnels in Seoul, Korea. International Journal of Environmental Research and Public Health, 2018, 15, 2534.	2.6	33
20	An evaluation of the optical fiber beam as a force sensor. Optical Fiber Technology, 2009, 15, 131-135.	2.7	32
21	A 2D DNA Lattice as an Ultrasensitive Detector for Beta Radiations. ACS Applied Materials & Detector f	8.0	32
22	Investigation on Surface Hardening of Polyurethane Pads During Chemical Mechanical Polishing (CMP). Journal of Electronic Materials, 2010, 39, 338-346.	2.2	30
23	In situ synthesis of MoS ₂ on a polymer based gold electrode platform and its application in electrochemical biosensing. RSC Advances, 2015, 5, 10134-10138.	3.6	29
24	Improvement of oxide removal rate in chemical mechanical polishing by forming oxygen vacancy in ceria abrasives via ultraviolet irradiation. Materials Chemistry and Physics, 2021, 273, 124967.	4.0	29
25	Reduction of metal contact resistance of graphene devices via CO2 cluster cleaning. Applied Physics Letters, 2014, 104, .	3.3	28
26	Near-UV-emitting graphene quantum dots from graphene hydrogels. Carbon, 2015, 94, 181-188.	10.3	28
27	Highly uniform wafer-scale synthesis of <i>î±</i> -MoO ₃ by plasma enhanced chemical vapor deposition. Nanotechnology, 2017, 28, 175601.	2.6	28
28	Low-Temperature and Large-Scale Production of a Transition Metal Sulfide Vertical Heterostructure and Its Application for Photodetectors. ACS Applied Materials & Samp; Interfaces, 2021, 13, 8710-8717.	8.0	27
29	The label free DNA sensor using a silicon nanowire array. Journal of Biotechnology, 2012, 160, 91-96.	3 . 8	25
30	Solvent-free bulk polymerization of lignin-polycaprolactone (PCL) copolymer and its thermoplastic characteristics. Scientific Reports, 2019, 9, 7033.	3.3	25
31	Energyâ€Band Engineering by Remote Doping of Selfâ€Assembled Monolayers Leads to Highâ€Performance IGZO/p‧i Heterostructure Photodetectors. Advanced Materials, 2022, 34, e2107364.	21.0	23
32	Effects of trivalent lanthanide (La and Nd) doped ceria abrasives on chemical mechanical polishing. Powder Technology, 2022, 397, 117025.	4.2	23
33	Sizeâ€Controllable DNA Rings with Copperâ€lon Modification. Small, 2012, 8, 374-377.	10.0	22
34	Study of Polishing Characteristics of Monodisperse Ceria Abrasive in Chemical Mechanical Planarization. Journal of the Electrochemical Society, 2010, 157, H235.	2.9	21
35	Realization of Waferâ€6cale 1Tâ€MoS ₂ Film for Efficient Hydrogen Evolution Reaction. ChemSusChem, 2021, 14, 1344-1350.	6.8	21
36	Patchwork-Structured Heterointerface of 1T-WS ₂ /a-WO ₃ with Sustained Hydrogen Spillover as a Highly Efficient Hydrogen Evolution Reaction Electrocatalyst. ACS Applied Materials & Samp; Interfaces, 2022, 14, 24008-24019.	8.0	21

#	Article	IF	CITATIONS
37	Effects of diamond size of CMP conditioner on wafer removal rates and defects for solid (non-porous) CMP pad with micro-holes. International Journal of Machine Tools and Manufacture, 2010, 50, 860-868.	13.4	19
38	DNA thin film coated optical fiber biosensor. Current Applied Physics, 2012, 12, 841-845.	2.4	18
39	Rheological and mechanical properties of polypropylene composites containing microfibrillated cellulose (MFC) with improved compatibility through surface silylation. Cellulose, 2019, 26, 1085-1097.	4.9	18
40	Highly efficient in-line wet cyclone air sampler for airborne virus detection. Journal of Mechanical Science and Technology, 2017, 31, 4363-4369.	1.5	17
41	Quantitative Electrode Design Modeling of an Electroadhesive Lifting Device Based on the Localized Charge Distribution and Interfacial Polarization of Different Objects. ACS Omega, 2019, 4, 7994-8000.	3.5	17
42	Online optical monitor of alpha radiations using a polymeric solid state nuclear track detector CR-39. Sensors and Actuators B: Chemical, 2012, 161, 697-701.	7.8	16
43	Development of optical monitor of alpha radiations based on CR-39. Applied Radiation and Isotopes, 2013, 81, 184-189.	1.5	16
44	Thin film-coated plastic optical fiber probe for aerosol chemical sensing applications. Sensors and Actuators B: Chemical, 2010, 150, 154-159.	7.8	15
45	Graphene-Based Waveguides: Novel Method for Detecting Biological Activity. Applied Biochemistry and Biotechnology, 2012, 167, 1069-1075.	2.9	15
46	Development of CO2 gas cluster cleaning method and its characterization. Microelectronic Engineering, 2013, 102, 87-90.	2.4	15
47	Combining Protein-Shelled Platinum Nanoparticles with Graphene to Build a Bionanohybrid Capacitor. ACS Nano, 2014, 8, 12120-12129.	14.6	14
48	DNA reusability and optoelectronic characteristics of streptavidin-conjugated DNA crystals on a quartz substrate. RSC Advances, 2015, 5, 39409-39415.	3.6	14
49	A Water Polishing Process to Improve Ceria Abrasive Removal. ECS Journal of Solid State Science and Technology, 2019, 8, P430-P436.	1.8	14
50	Concurrent and Selective Determination of Dopamine and Serotonin with Flexible WS ₂ /Graphene/Polyimide Electrode Using Cold Plasma. Small, 2021, 17, e2102757.	10.0	14
51	Generation Characteristics of Nanoparticles Emitted from Subways in Operation. Aerosol and Air Quality Research, 2018, 18, 2230-2239.	2.1	14
52	Effect of conditioner load on the polishing pad surface during chemical mechanical planarization process. Journal of Mechanical Science and Technology, 2016, 30, 5659-5665.	1.5	13
53	Detection and characterization of nanomaterials released in low concentrations during multi-walled carbon nanotube spraying process in a cleanroom. Inhalation Toxicology, 2013, 25, 759-765.	1.6	12
54	A Conductive Copolymer Based on Graphene Oxide and Poly (amidoxime-pyrrole) for Adsorption of Uranium (VI). Nano, 2016, 11, 1650045.	1.0	12

#	Article	IF	CITATIONS
55	The plastic optical fiber cantilever beam as a force sensor. Microwave and Optical Technology Letters, 2009, 51, 1020-1023.	1.4	11
56	Measurement of CMP Slurry Abrasive Size Distribution by Scanning Mobility Particle Sizer. Electrochemical and Solid-State Letters, 2010, 13, H137.	2.2	11
57	Non-Einstein Viscosity Phenomenon of Acrylonitrile–Butadiene–Styrene Composites Containing Lignin–Polycaprolactone Particulates Highly Dispersed by High-Shear Stress. ACS Omega, 2019, 4, 10036-10043.	3.5	11
58	Novel Air Filtration Device for Building Air Handling Unit. Aerosol and Air Quality Research, 2011, 11, 570-577.	2.1	11
59	Note: Evaluation of slurry particle size analyzers for chemical mechanical planarization process. Review of Scientific Instruments, 2016, 87, 046101.	1.3	10
60	Investigation of the pad-conditioning performance deterioration in the chemical mechanical polishing process. Wear, 2017, 392-393, 93-98.	3.1	10
61	Effect of Ceria Abrasive Synthesized by Supercritical Hydrothermal Method for Chemical Mechanical Planarization. ECS Journal of Solid State Science and Technology, 2019, 8, P3128-P3132.	1.8	10
62	Silver Nanoparticles-Silk Fibroin Nanocomposite Based Colorimetric Bio-Interfacial Sensor for On-Site Ultra-Trace Impurity Detection of Mercury Ions. Journal of Nanoscience and Nanotechnology, 2020, 20, 2122-2129.	0.9	10
63	Shape classification of fumed silica abrasive and its effects on chemical mechanical polishing. Powder Technology, 2021, 381, 451-458.	4.2	10
64	Unprecedentedly Uniform, Reliable, and Centimeter-Scale Molybdenum Disulfide Negative Differential Resistance Photodetectors. ACS Applied Materials & Samp; Interfaces, 2021, 13, 25072-25081.	8.0	10
65	Effect of Viscosity on Ceria Abrasive Removal during the Buff Clean Process. ECS Journal of Solid State Science and Technology, 2020, 9, 084003.	1.8	10
66	Formation of Silicon Nanoparticles Using SiH4 Pyrolysis at Atmospheric- and Low-Pressure. Journal of the Korean Physical Society, 2009, 54, 1021-1026.	0.7	10
67	The first progress of plasma-based transition metal dichalcogenide synthesis: a stable 1T phase and promising applications. Nanoscale Advances, 2022, 4, 2962-2972.	4.6	10
68	Generation of size and structure controlled Si nanoparticles using pulse plasma for energy devices. Thin Solid Films, 2009, 517, 4184-4187.	1.8	9
69	Experimental Evaluation of the Effect of Pad Debris Size on Microscratches during CMP Process. Journal of Electronic Materials, 2013, 42, 97-102.	2.2	9
70	Investigation of thermal effects in copper chemical mechanical polishing. Precision Engineering, 2022, 73, 195-202.	3.4	9
71	A nanoclustered ceria abrasives with low crystallinity and high Ce3+/Ce4+ ratio for scratch reduction and high oxide removal rates in the chemical mechanical planarization. Journal of Materials Science, 2022, 57, 12318-12328.	3.7	9
72	Synthesis and electric characterization of protein-shelled CdSe quantum dots. Journal of Materials Chemistry C, 2013, 1, 2412.	5.5	8

#	Article	IF	Citations
73	Characterization and removal of polysilicon residue during wet etching. Microelectronic Engineering, 2016, 149, 85-91.	2.4	8
74	Investigation of Copper Oxide Ring Formation during Post Chemical Mechanical Polishing Cleaning of Cu Interconnect. ECS Journal of Solid State Science and Technology, 2017, 6, P542-P546.	1.8	8
75	Fabrication and optoelectronic characterisation of lanthanide- and metal-ion-doped DNA thin films. Journal Physics D: Applied Physics, 2018, 51, 285301.	2.8	8
76	Evaluation of Size Distribution Measurement Methods for Sub-100Ânm Colloidal Silica Nanoparticles and Its Application to CMP Slurry. ECS Journal of Solid State Science and Technology, 2019, 8, P3195-P3200.	1.8	8
77	Investigation of abrasive-free slurry for polysilicon buffing chemical mechanical planarization. Materials Science in Semiconductor Processing, 2021, 128, 105755.	4.0	8
78	LIGHT-SENSITIVE SILICON NANOWIRE ARRAY FIELD EFFECT TRANSISTOR FOR GLUCOSE DETECTION. Nano, 2014, 09, 1450099.	1.0	7
79	Fabrication and characterization of PNA–DNA hybrid nanostructures. RSC Advances, 2014, 4, 35554-35558.	3.6	7
80	A methanol VOC sensor using divalent metal ion-modified 2D DNA lattices. RSC Advances, 2015, 5, 67712-67717.	3.6	7
81	Metal electrode dependent field effect transistors made of lanthanide ion-doped DNA crystals. Journal Physics D: Applied Physics, 2016, 49, 105501.	2.8	7
82	Communication—Effect of Hydrogen Water on Ceria Abrasive Removal in Post-CMP Cleaning. ECS Journal of Solid State Science and Technology, 2020, 9, 044012.	1.8	7
83	Electrochemical Detection of Airborne Influenza Virus using Air Sampling System. Aerosol and Air Quality Research, 2018, 18, 2721-2727.	2.1	7
84	Development of Force Sensor System Based on Tri-Axial Fiber Bragg Grating with Flexure Structure. Sensors, 2022, 22, 16.	3.8	7
85	A novel optical aerosol detector utilizing an optic fiber with conductive polymer coating. Journal of Aerosol Science, 2012, 45, 19-25.	3.8	6
86	Graphene photo detector with integrated waveguide biochemical sensors. Sensors and Actuators B: Chemical, 2013, 187, 319-322.	7.8	6
87	Coverage percentage and raman measurement of cross-tile and scaffold cross-tile based DNA nanostructures. Colloids and Surfaces B: Biointerfaces, 2015, 135, 677-681.	5.0	6
88	Photoinduced conductivity in mycosporine-like amino acids. Materials Chemistry and Physics, 2015, 151, 1-4.	4.0	6
89	Bioaerosol monitoring by integrating DC impedance microfluidic cytometer with wet-cyclone air sampler. Biosensors and Bioelectronics, 2021, 192, 113499.	10.1	6
90	Investigation of abrasive behavior between pad asperity and oxide thin film in chemical mechanical planarization. Materials Science in Semiconductor Processing, 2022, 138, 106280.	4.0	6

#	Article	IF	CITATIONS
91	Polishing of zirconia ceramics by chemically-induced micro-nano bubbles. Ceramics International, 2022, 48, 17185-17195.	4.8	6
92	Activation of nitrogen species mixed with Ar and H2S plasma for directly N-doped TMD films synthesis. Scientific Reports, 2022, 12, .	3.3	6
93	Damage-Free Design of a Megasonic Waveguide for Single-Wafer Processing. Electrochemical and Solid-State Letters, 2010, 13, H222.	2.2	5
94	Optimization of CMP Pad Surface by Laser Induced Micro Hole. Journal of the Electrochemical Society, 2011, 158, H15.	2.9	5
95	Effects of Ceria Abrasive Particle Size Distribution below Wafer Surface on In-Wafer Uniformity during Chemical Mechanical Polishing Processing. Journal of the Electrochemical Society, 2011, 158, H635.	2.9	5
96	Streptavidin bound DNA open tube and Zn2+-doped DNA open lattice. Current Applied Physics, 2015, 15, 851-856.	2.4	5
97	A simple and economical method using graphene oxide for the fabrication of water/oil separation papers. RSC Advances, 2015, 5, 57860-57864.	3.6	5
98	MoS ₂ -Graphene-Mycosporine-Like Amino Acid Nanocomposite as Photocatalyst. Nano, 2017, 12, 1750019.	1.0	5
99	A numerical study on slurry flow with CMP pad grooves. Microelectronic Engineering, 2020, 234, 111437.	2.4	5
100	Lifting-Force Maximization of a Micropatterned Electroadhesive Device Comparable to the Human-Finger Grip. ACS Applied Electronic Materials, 2020, 2, 1596-1602.	4.3	5
101	Synthesis of vertically aligned wafer-scale tantalum disulfide using high-Ar/H ₂ S ratio plasma. Nanotechnology, 2022, 33, 025603.	2.6	5
102	Recyclable free-polymer transfer of nano-grain MoS ₂ film onto arbitrary substrates. Nanotechnology, 2021, 32, 045702.	2.6	5
103	Frictional Characteristic of Polymeric Additive for the Slurry of Chemical Mechanical Planarization Process. ECS Journal of Solid State Science and Technology, 2012, 1, P101-P106.	1.8	4
104	Photoresistivity and optical switching of graphene with DNA lattices. Current Applied Physics, 2012, 12, 623-627.	2.4	4
105	Structural stability and electrical characteristic of DNA lattices doped with lanthanide ions. Current Applied Physics, 2017, 17, 1409-1414.	2.4	4
106	Development and Evaluation of Tri-Axial Fiber Bragg Grating Force Sensor for Catheter. Proceedings (mdpi), 2017, 1 , .	0.2	4
107	Application of electrospray-scanning mobility particle sizer for the measurement of sub-10 nm chemical mechanical planarization slurry abrasive size distribution. Review of Scientific Instruments, 2020, 91, 075117.	1.3	4
108	Selective and sensitive colorimetric detection of mercury ions in aqueous solutions using silver nanoparticles synthesized in innovative biomaterial matrix. Emergent Materials, 2021, 4, 1319-1327.	5.7	4

#	Article	IF	Citations
109	Investigations of the Pad Trajectory Effect on the Asymmetric Profile and Arc-Shaped Scratches in Chemical Mechanical Polishing. ECS Journal of Solid State Science and Technology, 2021, 10, 074005.	1.8	4
110	Quadrature moment simulation of silica nanoparticles aggregation and breakage in chemical mechanical polishing. Journal of Industrial and Engineering Chemistry, 2022, 107, 207-214.	5.8	4
111	Simulation and Experimental Investigation of the Radial Groove Effect on Slurry Flow in Oxide Chemical Mechanical Polishing. Applied Sciences (Switzerland), 2022, 12, 4339.	2.5	4
112	Chromism-Integrated Sensors and Devices for Visual Indicators. Sensors, 2022, 22, 4288.	3.8	4
113	Development of a novel aerosol impactor utilizing inward flow from a ring-shaped nozzle. Journal of Aerosol Science, 2015, 85, 1-9.	3.8	3
114	Photocurrent enhancement of SiNW-FETs by integrating protein-shelled CdSe quantum dots. Nanoscale, 2016, 8, 1921-1925.	5.6	3
115	Diamond structure-dependent pad and wafer polishing performance during chemical mechanical polishing. International Journal of Advanced Manufacturing Technology, 2018, 97, 563-571.	3.0	3
116	Study on the effect of residual ceria slurry on chemical mechanical planarization (CMP). Microelectronic Engineering, 2021, 249, 111620.	2.4	3
117	<l>I>In-Situ</l> Synthesis of Polypyrrole-Mycosporine Like Amino Acid Nanocomposite Film for Resistive UV-B Sensor. Sensor Letters, 2014, 12, 1736-1740.	0.4	3
118	Photo-oxidative degradation of polyacids derived ceria nanoparticle modulation for chemical mechanical polishing. Scientific Reports, 2022, 12, 1613.	3.3	3
119	Real-Time Diagnosis of Nano-Sized Contaminant Particles Generated in TiN Metal Organic Chemical Vapor Deposition. Applied Physics Express, 2009, 2, 035501.	2.4	2
120	Effects of Process Variables on TiN Particle Formation during Metallorganic Chemical Vapor Deposition. Electrochemical and Solid-State Letters, 2010, 13, H248.	2.2	2
121	Spectroscopic properties of artificial DNA nanostructures. Current Applied Physics, 2011, 11, 1233-1236.	2.4	2
122	Generation of Si:H nanoparticles by a combination of pulse plasma and hydrogen gas pulses. Thin Solid Films, 2011, 519, 7086-7089.	1.8	2
123	Trace Metals Optimization in Ceria Abrasive for Material Removal Rate Enhancement during ILD CMP. ECS Journal of Solid State Science and Technology, 2017, 6, P687-P690.	1.8	2
124	Effect of elastomer characteristics on fiber optic force sensing performance in biomedical robotics applications. Journal of Mechanical Science and Technology, 2018, 32, 5631-5636.	1.5	2
125	Investigation of a Standard Particle Deposition System on Wafer Surface and Its Application to Wafer Cleaning. ECS Journal of Solid State Science and Technology, 2019, 8, P768-P774.	1.8	2
126	Investigations on the mechanism of silica particle removal during the Cu buff cleaning process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627, 127156.	4.7	2

#	Article	IF	Citations
127	Tangential flow filtration of ceria slurry: Application of a single-pass method to improve buff cleaning. Materials Science in Semiconductor Processing, 2022, 145, 106618.	4.0	2
128	Damage-free Design of Megasonic Waveguide for Single Wafer Process. ECS Transactions, 2009, 25, 303-309.	0.5	1
129	Controlled Synthesis of Horizontal Silicon Nanowires for Biosensor Application. Nano, 2015, 10, 1550107.	1.0	1
130	Removal of Nano-sized Particles Using Carbon Dioxide (CO2) Gas Cluster Cleaning without Pattern Damage. Particulate Science and Technology, 2015, 33, 558-561.	2.1	1
131	High-Purity Amino-Functionalized Graphene Quantum Dots Derived from Graphene Hydrogel. Nano, 2016, 11, 1650138.	1.0	1
132	Development and Evaluation of Tri-Axial Fiber Bragg Grating in a Measurement Module for Catheterization. , 2019, , .		1
133	Distinct characteristics of DNA field effect transistors embedded with marine-derived porphyra-334 under UV illumination. AIP Advances, 2019, 9, .	1.3	1
134	Communicationâ€"A Novel Method to Improve Cleaning Performance by Removing Small Particles in CMP Slurry. ECS Journal of Solid State Science and Technology, 2021, 10, 024001.	1.8	1
135	Friction Characteristics of Molybdenum Disulfide Thin Films Synthesized via Plasma Sulfurization. Advanced Engineering Materials, 2021, 23, 2100971.	3.5	1
136	Experimental Study of Nanoparticle Generation During High-Density Plasma Chemical Vapor Deposition of Poly-Silicon Films. Journal of the Korean Physical Society, 2007, 51, 1187.	0.7	1
137	Uniform deposition method of monodispersed SiO2 nanoparticles on a 300-mm Si wafer surface. Review of Scientific Instruments, 2021, 92, 113704.	1.3	1
138	Gas-Phase Synthesis of Silicon Nanoparticles and Mixing with Graphite Powders by Using Counter-Flow Injection. Japanese Journal of Applied Physics, 2009, 48, 08HH02.	1.5	0
139	Functional graphene composite films for surface plasmon resonance sensor technology. , 2014, , .		0
140	Characteristic of pad cut rate as conditioner structure. , 2014, , .		0
141	Photoelectric properties in metal ion modified DNA nanostructure. , 2015, 2015, 4359-62.		0
142	Novel in-line aerosol impactor utilizing upward inlet flow. Journal of Aerosol Science, 2019, 129, 87-97.	3.8	0
143	Removal of nano-sized surface particles by CO2 gas cluster collisions for dry cleaning. Microelectronic Engineering, 2020, 234, 111438.	2.4	0
144	Effect of Viscosity on Ceria Abrasive Removal in the Buffing CMP Process. Solid State Phenomena, 0, 314, 247-252.	0.3	0

TAESUNG KIM

#	Article	IF	CITATIONS
145	The effects of alpha irradiation on the optical reflectivity of composite polymers. Radiation Physics and Chemistry, 2022, 191, 109832.	2.8	0
146	Study on wet etching of dummy polysilicon in narrow pattern gap using alkaline solution. Materials Science in Semiconductor Processing, 2022, 143, 106561.	4.0	0