Yong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1202676/publications.pdf Version: 2024-02-01

YONG WANG

#	Article	IF	CITATIONS
1	A combined GA-TS algorithm for two-echelon dynamic vehicle routing with proactive satellite stations. Computers and Industrial Engineering, 2022, 164, 107899.	3.4	8
2	Collaborative multicenter vehicle routing problem with time windows and mixed deliveries and pickups. Expert Systems With Applications, 2022, 197, 116690.	4.4	27
3	Collaborative Multidepot Vehicle Routing Problem with Dynamic Customer Demands and Time Windows. Sustainability, 2022, 14, 6709.	1.6	4
4	Collaborative multicenter reverse logistics network design with dynamic customer demands. Expert Systems With Applications, 2022, 206, 117926.	4.4	9
5	An efficiency-based capacity formulation: mathematical properties and practical implications. Transportmetrica A: Transport Science, 2021, 17, 1171-1192.	1.3	0
6	Collaborative multiple centers fresh logistics distribution network optimization with resource sharing and temperature control constraints. Expert Systems With Applications, 2021, 165, 113838.	4.4	39
7	Two-echelon collaborative multi-depot multi-period vehicle routing problem. Expert Systems With Applications, 2021, 167, 114201.	4.4	49
8	Customized bus route design with pickup and delivery and time windows: Model, case study and comparative analysis. Expert Systems With Applications, 2021, 168, 114242.	4.4	32
9	How to Identify Patterns of Citywide Dynamic Traffic at a Low Cost? An In-Depth Neural Network Approach with Digital Maps. Complexity, 2021, 2021, 1-15.	0.9	0
10	Two-Echelon Location-Routing Problem with Time Windows and Transportation Resource Sharing. Journal of Advanced Transportation, 2021, 2021, 1-20.	0.9	3
11	Collaborative logistics pickup and delivery problem with eco-packages based on time–space network. Expert Systems With Applications, 2021, 170, 114561.	4.4	19
12	Multidepot Recycling Vehicle Routing Problem with Resource Sharing and Time Window Assignment. Journal of Advanced Transportation, 2021, 2021, 1-21.	0.9	2
13	Multi-Depot Pickup and Delivery Problem with Resource Sharing. Journal of Advanced Transportation, 2021, 2021, 1-22.	0.9	1
14	Emergency logistics network design based on space–time resource configuration. Knowledge-Based Systems, 2021, 223, 107041.	4.0	58
15	Two-echelon multi-period location routing problem with shared transportation resource. Knowledge-Based Systems, 2021, 226, 107168.	4.0	11
16	Cooperation and profit allocation for two-echelon logistics pickup and delivery problems with state–space–time networks. Applied Soft Computing Journal, 2021, 109, 107528.	4.1	13
17	Collaborative multi-depot pickup and delivery vehicle routing problem with split loads and time windows. Knowledge-Based Systems, 2021, 231, 107412.	4.0	33
18	A combined intelligent and game theoretical methodology for collaborative multicenter pickup and delivery problems with time window assignment. Applied Soft Computing Journal, 2021, 113, 107875.	4.1	12

YONG WANG

#	Article	IF	CITATIONS
19	Two-Echelon Multidepot Logistics Network Design with Resource Sharing. Journal of Advanced Transportation, 2021, 2021, 1-28.	0.9	3
20	Collaborative multi-depot logistics network design with time window assignment. Expert Systems With Applications, 2020, 140, 112910.	4.4	59
21	Green logistics location-routing problem with eco-packages. Transportation Research, Part E: Logistics and Transportation Review, 2020, 143, 102118.	3.7	118
22	Collaboration and Resource Sharing in the Multidepot Multiperiod Vehicle Routing Problem with Pickups and Deliveries. Sustainability, 2020, 12, 5966.	1.6	12
23	Collaborative Multidepot Petrol Station Replenishment Problem with Multicompartments and Time Window Assignment. Journal of Advanced Transportation, 2020, 2020, 1-22.	0.9	4
24	An expert system to discover key congestion points for urban traffic. Expert Systems With Applications, 2020, 158, 113544.	4.4	9
25	Collaborative two-echelon multicenter vehicle routing optimization based on state–space–time network representation. Journal of Cleaner Production, 2020, 258, 120590.	4.6	92
26	Collaborative multicenter logistics delivery network optimization with resource sharing. PLoS ONE, 2020, 15, e0242555.	1.1	7
27	Success of Social Media Marketing Efforts in Retaining Sustainable Online Consumers: An Empirical Analysis on the Online Fashion Retail Market. Sustainability, 2019, 11, 3596.	1.6	25
28	Collaborative Mechanism for Pickup and Delivery Problems with Heterogeneous Vehicles Under Time Windows. Sustainability, 2019, 11, 3492.	1.6	14
29	Emergency Alternative Evaluation Using Extended Trapezoidal Intuitionistic Fuzzy Thermodynamic Approach with Prospect Theory. International Journal of Fuzzy Systems, 2019, 21, 1801-1817.	2.3	17
30	Multi-depot green vehicle routing problem with shared transportation resource: Integration of time-dependent speed and piecewise penalty cost. Journal of Cleaner Production, 2019, 232, 12-29.	4.6	87
31	BSSReduce an <inline-formula> <tex-math notation="LaTeX">\$O(left Uight)\$ </tex-math </inline-formula> Incremental Feature Selection Approach for Large-Scale and High-Dimensional Data. IEEE Transactions on Fuzzy Systems, 2018 26 3356-3367	6.5	24
32	Two-echelon location-routing optimization with time windows based on customer clustering. Expert Systems With Applications, 2018, 104, 244-260.	4.4	96
33	Capacitated and multiple cross-docked vehicle routing problem with pickup, delivery, and time windows. Computers and Industrial Engineering, 2018, 119, 76-84.	3.4	45
34	Quantitative risk assessment of freeway crash casualty using high-resolution traffic data. Reliability Engineering and System Safety, 2018, 169, 299-311.	5.1	52
35	Evaluating the Impacts of Bus Stop Design and Bus Dwelling on Operations of Multitype Road Users. Journal of Advanced Transportation, 2018, 2018, 1-10.	0.9	24
36	Two-echelon logistics delivery and pickup network optimization based on integrated cooperation and transportation fleet sharing. Expert Systems With Applications, 2018, 113, 44-65.	4.4	35

YONG WANG

#	Article	IF	CITATIONS
37	Design and Profit Allocation in Two-Echelon Heterogeneous Cooperative Logistics Network Optimization. Journal of Advanced Transportation, 2018, 2018, 1-20.	0.9	10
38	Economic and environmental evaluations in the two-echelon collaborative multiple centers vehicle routing optimization. Journal of Cleaner Production, 2018, 197, 443-461.	4.6	46
39	Collaboration and transportation resource sharing in multiple centers vehicle routing optimization with delivery and pickup. Knowledge-Based Systems, 2018, 160, 296-310.	4.0	66
40	Implementation of Cooperation for Recycling Vehicle Routing Optimization in Two-Echelon Reverse Logistics Networks. Sustainability, 2018, 10, 1358.	1.6	15
41	Implementation of Cooperation for Recycling Vehicle Routing Optimization in Two-Echelon Reverse Logistics Networks. Sustainability, 2018, 10, 1358.	1.6	1
42	Cooperation and profit allocation in two-echelon logistics joint distribution network optimization. Applied Soft Computing Journal, 2017, 56, 143-157.	4.1	88
43	Profit distribution in collaborative multiple centers vehicle routing problem. Journal of Cleaner Production, 2017, 144, 203-219.	4.6	153
44	Design optimization of resource combination for collaborative logistics network under uncertainty. Applied Soft Computing Journal, 2017, 56, 684-691.	4.1	61
45	Learning Traffic as Images: A Deep Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction. Sensors, 2017, 17, 818.	2.1	978
46	Evaluating the Interference of Bicycle Traffic on Vehicle Operation on Urban Streets with Bike Lanes. Journal of Advanced Transportation, 2017, 2017, 1-9.	0.9	9
47	Understanding Freight Trip-Chaining Behavior Using a Spatial Data-Mining Approach with GPS Data. Transportation Research Record, 2016, 2596, 44-54.	1.0	22
48	Multiobjective Vehicle Routing Problems With Simultaneous Delivery and Pickup and Time Windows: Formulation, Instances, and Algorithms. IEEE Transactions on Cybernetics, 2016, 46, 582-594.	6.2	149
49	Vehicle routing problem based on a fuzzy customer clustering approach for logistics network optimization. Journal of Intelligent and Fuzzy Systems, 2015, 29, 1427-1442.	0.8	25
50	A Methodology to Exploit Profit Allocation in Logistics Joint Distribution Network Optimization. Mathematical Problems in Engineering, 2015, 2015, 1-15.	0.6	4
51	Two-echelon logistics distribution region partitioning problem based on a hybrid particle swarm optimization–genetic algorithm. Expert Systems With Applications, 2015, 42, 5019-5031.	4.4	74
52	A fuzzy-based customer clustering approach with hierarchical structure for logistics network optimization. Expert Systems With Applications, 2014, 41, 521-534.	4.4	88
53	A two-stage heuristic method for vehicle routing problem with split deliveries and pickups. Journal of Zhejiang University: Science C, 2014, 15, 200-210.	0.7	16
54	Vehicle Routing Problem. Transportation Research Record, 2013, 2378, 120-128.	1.0	27

#	Article	IF	CITATIONS
55	Location optimization of multiple distribution centers under fuzzy environment. Journal of Zhejiang University: Science A, 2012, 13, 782-798.	1.3	25