Stefan Bauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12026551/publications.pdf

Version: 2024-02-01

159358 264894 3,787 42 42 30 citations h-index g-index papers 46 46 46 5791 times ranked citing authors all docs docs citations

#	Article	IF	CITATIONS
1	Toward a Systems Approach to Understanding Plant Cell Walls. Science, 2004, 306, 2206-2211.	6.0	1,090
2	Development and application of a suite of polysaccharide-degrading enzymes for analyzing plant cell walls. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11417-11422.	3.3	300
3	The Arabidopsis irregular xylem8 Mutant Is Deficient in Glucuronoxylan and Homogalacturonan, Which Are Essential for Secondary Cell Wall Integrity. Plant Cell, 2007, 19, 237-255.	3.1	251
4	Characterization of <i>Miscanthus giganteus</i> Lignin Isolated by Ethanol Organosolv Process under Reflux Condition. Journal of Agricultural and Food Chemistry, 2012, 60, 8203-8212.	2.4	200
5	Roles of Small Laccases from <i>Streptomyces</i> in Lignin Degradation. Biochemistry, 2014, 53, 4047-4058.	1.2	159
6	CHITINASE-LIKE1/POM-POM1 and Its Homolog CTL2 Are Glucan-Interacting Proteins Important for Cellulose Biosynthesis in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 589-607.	3.1	158
7	Studies on the Vanadium-Catalyzed Nonoxidative Depolymerization of Miscanthus giganteus-Derived Lignin. ACS Catalysis, 2013, 3, 1369-1377.	5.5	150
8	Dissecting a complex chemical stress: chemogenomic profiling of plant hydrolysates. Molecular Systems Biology, 2013, 9, 674.	3.2	103
9	Functional genomics of lipid metabolism in the oleaginous yeast Rhodosporidium toruloides. ELife, 2018, 7, .	2.8	98
10	A comparative systems analysis of polysaccharideâ€elicited responses in ⟨i⟩⟨scp⟩N⟨/scp⟩eurospora crassa⟨/i⟩ reveals carbon sourceâ€specific cellular adaptations. Molecular Microbiology, 2014, 91, 275-299.	1.2	95
11	Prospecting for Energy-Rich Renewable Raw Materials: Agave Leaf Case Study. PLoS ONE, 2015, 10, e0135382.	1.1	73
12	A new method for isolating large quantities of Arabidopsis trichomes for transcriptome, cell wall and other types of analyses. Plant Journal, 2008, 56, 483-492.	2.8	72
13	Physiological and Genetic Description of Dissimilatory Perchlorate Reduction by the Novel Marine Bacterium <i>Arcobacter</i> sp. Strain CAB. MBio, 2013, 4, e00217-13.	1.8	64
14	The genetic basis of energy conservation in the sulfate-reducing bacterium Desulfovibrio alaskensis G20. Frontiers in Microbiology, 2014, 5, 577.	1.5	61
15	Comprehensive Analysis of Monomeric Phenolics in Dilute Acid Plant Hydrolysates. Bioenergy Research, 2014, 7, 654-669.	2.2	61
16	Cloning, expression, and characterization of an oligoxyloglucan reducing end-specific xyloglucanobiohydrolase from Aspergillus nidulans. Carbohydrate Research, 2005, 340, 2590-2597.	1.1	60
17	Structural Transformation of Miscanthus \tilde{A} — giganteus Lignin Fractionated under Mild Formosolv, Basic Organosolv, and Cellulolytic Enzyme Conditions. Journal of Agricultural and Food Chemistry, 2012, 60, 144-152.	2.4	56
18	Identification and characterization of a galacturonic acid transporter from Neurospora crassa and its application for Saccharomyces cerevisiae fermentation processes. Biotechnology for Biofuels, 2014, 7, 20.	6.2	54

#	Article	IF	CITATIONS
19	Anisotropic Cell Expansion Is Affected through the Bidirectional Mobility of Cellulose Synthase Complexes and Phosphorylation at Two Critical Residues on CESA3. Plant Physiology, 2016, 171, 242-250.	2.3	54
20	Programming mRNA decay to modulate synthetic circuit resource allocation. Nature Communications, 2017, 8, 15128.	5.8	50
21	Downscaled method using glass microfiber filters for the determination of Klason lignin and structural carbohydrates. Biomass and Bioenergy, 2014, 68, 75-81.	2.9	46
22	Mass Spectrometry for Characterizing Plant Cell Wall Polysaccharides. Frontiers in Plant Science, 2012, 3, 45.	1.7	42
23	Fungi isolated from Miscanthus and sugarcane: biomass conversion, fungal enzymes, and hydrolysis of plant cell wall polymers. Biotechnology for Biofuels, 2015, 8, 38.	6.2	41
24	Biochemical Analyses of Multiple Endoxylanases from the Rumen Bacterium Ruminococcus albus 8 and Their Synergistic Activities with Accessory Hemicellulose-Degrading Enzymes. Applied and Environmental Microbiology, 2011, 77, 5157-5169.	1.4	37
25	Identification of MEDIATOR16 as the <i>Arabidopsis</i> COBRA suppressor MONGOOSE1. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 16048-16053.	3.3	37
26	The Arabidopsis COBRA Protein Facilitates Cellulose Crystallization at the Plasma Membrane. Journal of Biological Chemistry, 2014, 289, 34911-34920.	1.6	35
27	Compositional analysis of Miscanthus giganteus by near infrared spectroscopy. Cellulose, 2013, 20, 1629-1637.	2.4	33
28	Analytical method for the determination of organic acids in dilute acid pretreated biomass hydrolysate by liquid chromatography-time-of-flight mass spectrometry. Biotechnology for Biofuels, 2014, 7, 145.	6.2	33
29	Rapid determination of cellulose. Biotechnology and Bioengineering, 2014, 111, 2355-2357.	1.7	32
30	Environment Has Little Effect on Biomass Biochemical Composition of Miscanthus × giganteus Across Soil Types, Nitrogen Fertilization, and Times of Harvest. Bioenergy Research, 2015, 8, 1636-1646.	2.2	31
31	Overcoming inefficient cellobiose fermentation by cellobiose phosphorylase in the presence of xylose. Biotechnology for Biofuels, 2014, 7, 85.	6.2	28
32	Quantitative Trait Loci (QTL)-Guided Metabolic Engineering of a Complex Trait. ACS Synthetic Biology, 2017, 6, 566-581.	1.9	26
33	Lignocellulose-derived thin stillage composition and efficient biological treatment with a high-rate hybrid anaerobic bioreactor system. Biotechnology for Biofuels, 2016, 9, 120.	6.2	25
34	Rapid Small-Scale Determination of Extractives in Biomass. Bioenergy Research, 2015, 8, 68-76.	2.2	23
35	Fermentation of hydrolysate detoxified by pervaporation through block copolymer membranes. Green Chemistry, 2014, 16, 4206-4213.	4.6	22
36	(Per)Chlorate-Reducing Bacteria Can Utilize Aerobic and Anaerobic Pathways of Aromatic Degradation with (Per)Chlorate as an Electron Acceptor. MBio, 2015, 6, .	1.8	22

#	Article	IF	CITATION
37	Functional characterization of genes mediating cell wall metabolism and responses to plant cell wall integrity impairment. BMC Plant Biology, 2019, 19, 320.	1.6	20
38	Bypassing the Pentose Phosphate Pathway: Towards Modular Utilization of Xylose. PLoS ONE, 2016, 11, e0158111.	1.1	18
39	Identification of methanogenesis and syntrophy as important microbial metabolic processes for optimal thermophilic anaerobic digestion of energy cane thin stillage. Bioresource Technology Reports, 2019, 7, 100254.	1.5	17
40	Cloning and Expression of Hemicellulases from Aspergillus nidulans in Pichia pastoris. Methods in Molecular Biology, 2012, 824, 393-416.	0.4	4
41	O-Glycan analysis of cellobiohydrolase I fromNeurospora crassa. Glycobiology, 2016, 26, 670-677.	1.3	4
42	Does size matter? Separations on guard columns for fast sample analysis applied to bioenergy research. BMC Biotechnology, 2015, 15, 38.	1.7	0