Yoshihito Kano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1202584/publications.pdf Version: 2024-02-01

Υσεμιμιτο Κλησ

#	Article	IF	CITATIONS
1	MYC-PDL1 axis reduces sensitivity to nivolumab in recurrent head and neck squamous cell carcinoma. Oral Oncology, 2022, 124, 105666.	0.8	2
2	Clinical utility of comprehensive genomic profiling in Japan: Result of PROFILE-F study. PLoS ONE, 2022, 17, e0266112.	1.1	13
3	Primary pulmonary choriocarcinoma with a genomic sequence. Pathology International, 2022, 72, 141-143.	0.6	6
4	Comprehensive Genomic Profiling Reveals Clinical Associations in Response to Immune Therapy in Head and Neck Cancer. Cancers, 2022, 14, 3476.	1.7	9
5	PD-1 blockade delays tumor growth by inhibiting an intrinsic SHP2/Ras/MAPK signalling in thyroid cancer cells. Journal of Experimental and Clinical Cancer Research, 2021, 40, 22.	3.5	37
6	ASO Author Reflections: Impact of Liquid Biopsy Using Plasma Cell-Free DNA in Solid Tumors in Japan. Annals of Surgical Oncology, 2021, 28, 8506-8507.	0.7	2
7	A Pilot Study Analyzing the Clinical Utility of Comprehensive Genomic Profiling Using Plasma Cell-Free DNA for Solid Tumor Patients in Japan (PROFILE Study). Annals of Surgical Oncology, 2021, 28, 8497-8505.	0.7	8
8	Intestinal phenotype is maintained by Atoh1 in the cancer region of intraductal papillary mucinous neoplasm. Cancer Science, 2021, 112, 932-944.	1.7	4
9	The Q61H mutation decouples KRAS from upstream regulation and renders cancer cells resistant to SHP2 inhibitors. Nature Communications, 2021, 12, 6274.	5.8	22
10	The clinical utility of comprehensive genomic profiling for recurrent / metastatic head and neck cancer. Japanese Journal of Head and Neck Cancer, 2021, 47, 359-365.	0.0	0
11	<i>NRAS</i> Status Determines Sensitivity to SHP2 Inhibitor Combination Therapies Targeting the RAS–MAPK Pathway in Neuroblastoma. Cancer Research, 2020, 80, 3413-3423.	0.4	40
12	Clinical impact of hemizygous deletion detection and panel-size in comprehensive genomic profiling Journal of Clinical Oncology, 2020, 38, e15671-e15671.	0.8	0
13	A Hypoxia-Inducible HIF1–GAL3ST1-Sulfatide Axis Enhances ccRCC Immune Evasion via Increased Tumor Cell–Platelet Binding. Molecular Cancer Research, 2019, 17, 2306-2314.	1.5	19
14	Tyrosyl phosphorylation of KRAS stalls GTPase cycle via alteration of switch I and II conformation. Nature Communications, 2019, 10, 224.	5.8	66
15	Abstract 3123: Targeting SHP2 and RAS MAPK pathway in neuroblastoma. , 2019, , .		0
16	Abstract 4360: Altering the regulation of KRAS GTPase cycle via Src and SHP2 creates a potential therapeutic vulnerability for pancreatic cancer. , 2018, , .		14
17	New structural and functional insight into the regulation of Ras. Seminars in Cell and Developmental Biology, 2016, 58, 70-78.	2.3	22
18	Abstract B13: Novel treatment strategy for pancreatic cancer by targeting the â€~undruggable' Ras oncoprotein. , 2016, , .		0

Υοςηιμιτο Κανο

#	Article	IF	CITATIONS
19	Atonal homolog 1 protein stabilized by tumor necrosis factor α induces high malignant potential in colon cancer cell line. Cancer Science, 2015, 106, 1000-1007.	1.7	20
20	Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis. Nature Communications, 2015, 6, 8859.	5.8	173
21	Primary hepatic neuroendocrine carcinoma with a cholangiocellular carcinoma component in one nodule. Clinical Journal of Gastroenterology, 2014, 7, 449-454.	0.4	9
22	Fluorescent labelling of intestinal epithelial cells reveals independent long-lived intestinal stem cells in a crypt. Biochemical and Biophysical Research Communications, 2014, 454, 493-499.	1.0	10
23	Src promotes GTPase activity of Ras via tyrosine 32 phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3785-94.	3.3	81
24	Hes1 promotes the IL-22-mediated antimicrobial response by enhancing STAT3-dependent transcription in human intestinal epithelial cells. Biochemical and Biophysical Research Communications, 2014, 443, 840-846.	1.0	43
25	The acquisition of malignant potential in colon cancer is regulated by the stabilization of Atonal homolog 1 protein. Biochemical and Biophysical Research Communications, 2013, 432, 175-181.	1.0	19
26	Improved Bioavailability of a Water-Insoluble Drug by Inhalation of Drug-Containing Maltosyl-β-Cyclodextrin Microspheres Using a Four-Fluid Nozzle Spray Drier. AAPS PharmSciTech, 2012, 13, 1130-1137.	1.5	8
27	Longitudinal cell formation in the entire human small intestine is correlated with the localization of Hath1 and Klf4. Journal of Gastroenterology, 2011, 46, 191-202.	2.3	17
28	Suppression of hath1 gene expression directly regulated by hes1 via notch signaling is associated with goblet cell depletion in ulcerative colitis. Inflammatory Bowel Diseases, 2011, 17, 2251-2260.	0.9	117