Shaoqing Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12025495/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tailoring Electronâ€Riched Boron Sites in BCN for Nitrogen Fixation via Alternate Mechanism. Advanced Materials Interfaces, 2022, 9, .	3.7	9
2	Unraveling the crystallinity on battery performances of chlorine-rich argyrodite electrolytes. Journal of Power Sources, 2022, 520, 230890.	7.8	24
3	Enhancing Moisture and Electrochemical Stability of the Li _{5.5} PS _{4.5} Cl _{1.5} Electrolyte by Oxygen Doping. ACS Applied Materials & Interfaces, 2022, 14, 4179-4185.	8.0	44
4	Atomically dispersed cobalt in core-shell carbon nanofiber membranes as super-flexible freestanding air-electrodes for wearable Zn-air batteries. Energy Storage Materials, 2022, 47, 365-375.	18.0	35
5	Enabling ultrafast lithium-ion conductivity of Li2ZrCl6 by indium doping. Chinese Chemical Letters, 2022, 33, 4635-4639.	9.0	33
6	Copper single-atom catalyst as a high-performance electrocatalyst for nitrate-ammonium conversion. Journal of Hazardous Materials, 2022, 434, 128892.	12.4	34
7	Engineering high conductive Li7P2S8I via Cl- doping for all-solid-state Li-S batteries workable at different operating temperatures. Chemical Engineering Journal, 2022, 442, 136346.	12.7	21
8	N-doped porous carbon spheres as metal-free electrocatalyst for oxygen reduction reaction. Journal of Materials Chemistry A, 2021, 9, 5751-5758.	10.3	46
9	Weakening Intermediate Bindings on CuPd/Pd Core/shell Nanoparticles to Achieve Ptâ€Like Bifunctional Activity for Hydrogen Evolution and Oxygen Reduction Reactions. Advanced Functional Materials, 2021, 31, 2100883.	14.9	68
10	Facet Engineering to Regulate Surface States of Topological Crystalline Insulator Bismuth Rhombic Dodecahedrons for Highly Energy Efficient Electrochemical CO ₂ Reduction. Advanced Materials, 2021, 33, e2008373.	21.0	84
11	Constructing Co–N–C Catalyst via a Double Crosslinking Hydrogel Strategy for Enhanced Oxygen Reduction Catalysis in Fuel Cells. Small, 2021, 17, e2100735.	10.0	29
12	Improving the Stability of Nonâ€Nobleâ€Metal M–N–C Catalysts for Protonâ€Exchangeâ€Membrane Fuel Ce through M–N Bond Length and Coordination Regulation. Advanced Materials, 2021, 33, e2006613.	lls 21.0	94
13	LiNbO3-coated LiNi0.7Co0.1Mn0.2O2 and chlorine-rich argyrodite enabling high-performance solid-state batteries under different temperatures. Energy Storage Materials, 2021, 43, 53-61.	18.0	120
14	Zn doped MAPbBr ₃ single crystal with advanced structural and optical stability achieved by strain compensation. Nanoscale, 2020, 12, 3692-3700.	5.6	22
15	Defectâ€Rich Copperâ€doped Ruthenium Hollow Nanoparticles for Efficient Hydrogen Evolution Electrocatalysis in Alkaline Electrolyte. Chemistry - an Asian Journal, 2020, 15, 2868-2872.	3.3	6
16	Boosting Efficiency and Stability of Planar Inverted (FAPbI 3) x (MAPbBr 3) 1â^' x Solar Cells via FAPbI 3 and MAPbBr 3 Crystal Powders. Solar Rrl, 2020, 4, 2000091.	5.8	19
17	Evidence for Ferroelectricity of All-Inorganic Perovskite CsPbBr ₃ Quantum Dots. Journal of the American Chemical Society, 2020, 142, 3316-3320.	13.7	53
18	Degradation induced lattice anchoring self-passivation in CsPbl _{3â^'x} Br _x . Journal of Materials Chemistry A. 2020. 8. 9963-9969.	10.3	7

SHAOQING CHEN

#	Article	IF	CITATIONS
19	Single Fe atoms anchored by short-range ordered nanographene boost oxygen reduction reaction in acidic media. Nano Energy, 2019, 66, 104164.	16.0	68
20	Elemental selenium enables enhanced water oxidation electrocatalysis of NiFe layered double hydroxides. Nanoscale, 2019, 11, 17376-17383.	5.6	46
21	Strong metal-support interaction promoted via constructing biocarbon membrane for enhanced CO preferential oxidation activity of Rh/CaCO3@biocarbon. International Journal of Hydrogen Energy, 2019, 44, 23034-23045.	7.1	6
22	Amperometric sarcosine biosensor based on hollow magnetic Pt–Fe3O4@C nanospheres. Analytica Chimica Acta, 2019, 1078, 161-167.	5.4	55
23	Co ₃ O ₄ –CuCoO ₂ Nanomesh: An Interface-Enhanced Substrate that Simultaneously Promotes CO Adsorption and O ₂ Activation in H ₂ Purification. ACS Applied Materials & Interfaces, 2019, 11, 6042-6053.	8.0	55
24	Optimum Preferential Oxidation Performance of CeO ₂ –CuO _{<i>x</i>} –RGO Composites through Interfacial Regulation. ACS Applied Materials & Interfaces, 2018, 10, 7935-7945.	8.0	55
25	Enhanced response of bulk heterojunction polymer photodetectors upon incorporating CsPbBr3 quantum dots. Applied Physics Letters, 2018, 113, .	3.3	6
26	Boosting Tunable Syngas Formation via Electrochemical CO ₂ Reduction on Cu/In ₂ O ₃ Core/Shell Nanoparticles. ACS Applied Materials & Interfaces, 2018, 10, 36996-37004.	8.0	106
27	Surface hydroxylation induced by alkaline-earth metal doping in NiO nanocrystals and its application in achieving a wide temperature operation window for preferential CO oxidation. Environmental Science: Nano, 2018, 5, 2368-2381.	4.3	18
28	Kinetic Control of Hexagonal Mg(<scp>OH</scp>) ₂ Nanoflakes for Catalytic Application of Preferential <scp>CO</scp> Oxidation. Chinese Journal of Chemistry, 2017, 35, 903-910.	4.9	5
29	Anchoring High-Concentration Oxygen Vacancies at Interfaces of CeO _{2–<i>x</i>} /Cu toward Enhanced Activity for Preferential CO Oxidation. ACS Applied Materials & Interfaces, 2015, 7, 22999-23007	8.0	173