Shuang Yao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1202521/publications.pdf

Version: 2024-02-01

34	1,552	21 h-index	34
papers	citations		g-index
34	34	34	1690 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Co-POM@MOF-derivatives with trace cobalt content for highly efficient oxygen reduction. Chinese Chemical Letters, 2022, 33, 1047-1050.	9.0	22
2	Switching Excited State Distribution of Metal–Organic Framework for Dramatically Boosting Photocatalysis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	48
3	Switching Excited State Distribution of Metal–Organic Framework for Dramatically Boosting Photocatalysis. Angewandte Chemie, 2022, 134, .	2.0	5
4	Microenvironment Regulation of {Co ₄ ^{II} O ₄ } Cubane for Syngas Photosynthesis. Inorganic Chemistry, 2022, 61, 13058-13066.	4.0	3
5	Anchoring ultrafine Cu2O nanocluster on PCN for CO2 photoreduction in water vapor with much improved stability. Applied Catalysis B: Environmental, 2022, 317, 121702.	20.2	22
6	Facile electron delivery from graphene template to ultrathin metal-organic layers for boosting CO2 photoreduction. Nature Communications, 2021, 12, 813.	12.8	114
7	Topology conversion of 1T MoS2 to S-doped 2H-MoTe2 nanosheets with Te vacancies for enhanced electrocatalytic hydrogen evolution. Science China Materials, 2021, 64, 2202-2211.	6.3	19
8	H-Bond-Mediated Selectivity Control of Formate versus CO during CO ₂ Photoreduction with Two Cooperative Cu/X Sites. Journal of the American Chemical Society, 2021, 143, 6114-6122.	13.7	105
9	Doping [Ru(bpy)3]2+ into metal-organic framework to facilitate the separation and reuse of noble-metal photosensitizer during CO2 photoreduction. Chinese Journal of Catalysis, 2021, 42, 1790-1797.	14.0	20
10	Construction of Lowâ€Cost Zâ€Scheme Heterostructure Cu ₂ O/PCN for Highly Selective CO ₂ Photoreduction to Methanol with Water Oxidation. Small, 2021, 17, e2103558.	10.0	23
11	Feeding Carbonylation with CO ₂ via the Synergy of Single-Site/Nanocluster Catalysts in a Photosensitizing MOF. Journal of the American Chemical Society, 2021, 143, 20792-20801.	13.7	91
12	Core–shell nanoporous AuCu ₃ @Au monolithic electrode for efficient electrochemical CO ₂ reduction. Journal of Materials Chemistry A, 2020, 8, 3344-3350.	10.3	46
13	Selfâ€Supported Nanoporous Au ₃ Cu Electrode with Enriched Gold on Surface for Efficient Electrochemical Reduction of CO ₂ . Chemistry - A European Journal, 2020, 26, 4143-4149.	3.3	18
14	Unveiling Single Atom Nucleation for Isolating Ultrafine fcc Ru Nanoclusters with Outstanding Dehydrogenation Activity. Advanced Energy Materials, 2020, 10, 2002138.	19.5	29
15	Photocatalytic coproduction of H2 and industrial chemical over MOF-derived direct Z-scheme heterostructure. Applied Catalysis B: Environmental, 2020, 273, 119066.	20.2	73
16	Encapsulation of Single Iron Sites in a Metal–Porphyrin Framework for High-Performance Photocatalytic CO ₂ Reduction. Inorganic Chemistry, 2020, 59, 6301-6307.	4.0	57
17	Polyoxometalate-based high-nuclear cobalt–vanadium–oxo cluster as efficient catalyst for visible light-driven CO2 reduction. Chinese Chemical Letters, 2019, 30, 1273-1276.	9.0	52
18	Polyoxometalateâ€Derived Ultrasmall Pt ₂ W/WO ₃ Heterostructure Outperforms Platinum for Largeâ€Currentâ€Density H ₂ Evolution. Advanced Energy Materials, 2019, 9, 1900597.	19.5	74

#	Article	IF	CITATIONS
19	MOF/CC-derivatives with trace amount of cobalt oxides as efficient electrocatalysts for oxygen reduction reaction. Chinese Chemical Letters, 2019, 30, 989-994.	9.0	12
20	Photosensitizing single-site metalâ^'organic framework enabling visible-light-driven CO2 reduction for syngas production. Applied Catalysis B: Environmental, 2019, 245, 496-501.	20.2	119
21	Nitrogen Coordination To Dramatically Enhance the Stability of In-MOF for Selectively Capturing CO ₂ from a CO ₂ /N ₂ Mixture. Crystal Growth and Design, 2019, 19, 1322-1328.	3.0	24
22	Capped Polyoxometalate Pillars between Metal–Organic Layers for Transferring a Supramolecular Structure into a Covalent 3D Framework. Inorganic Chemistry, 2018, 57, 1342-1349.	4.0	40
23	Charge-regulated sequential adsorption of anionic catalysts and cationic photosensitizers into metal-organic frameworks enhances photocatalytic proton reduction. Applied Catalysis B: Environmental, 2018, 224, 46-52.	20.2	81
24	Phosphorized polyoxometalate-etched iron-hydroxide porous nanotubes for efficient electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2018, 6, 24479-24485.	10.3	39
25	Assembly of polyoxometalates and Ni-bpy cationic units into the molecular core–shell structures as bifunctional electrocatalysts. RSC Advances, 2016, 6, 99010-99015.	3.6	18
26	Supermolecular assembly of polyoxoanion and metal–organic cationic units towards a model for core–shell nanostructures. RSC Advances, 2016, 6, 33946-33950.	3.6	5
27	Polyoxometalate-based supramolecular architecture constructed from a purely inorganic 1D chain and a metal–organic layer with efficient catalytic activity. RSC Advances, 2016, 6, 15513-15517.	3.6	24
28	Heterometallic 3d–4f cluster-containing polyoxotungstate obtained by partial disassembly of preformed large clusters. RSC Advances, 2015, 5, 76206-76210.	3.6	15
29	Incorporating Polyoxometalates into a Porous MOF Greatly Improves Its Selective Adsorption of Cationic Dyes. Chemistry - A European Journal, 2014, 20, 6927-6933.	3.3	237
30	Grafting Transition Metal–Organic Fragments onto W/Ta Mixedâ€Addendum Nanoclusters for Broadâ€Spectrumâ€Driven Photocatalysis. ChemPlusChem, 2014, 79, 1153-1158.	2.8	11
31	Integration of Lnâ€Sandwich POMs into Molecular Porous Systems Leading to Selfâ€Assembly of Metal–POM Framework Materials. European Journal of Inorganic Chemistry, 2013, 2013, 4770-4774.	2.0	21
32	A polyoxometalate-based ionic crystal assembly from a heterometallic cluster and polyoxoanions with visible-light catalytic activity. RSC Advances, 2013, 3, 20829.	3.6	31
33	Heterometallic appended {MMn ^{III} ₄ } cubanes encapsulated by lacunary polytungstate ligands. Dalton Transactions, 2013, 42, 342-346.	3.3	43
34	Mixed-valence manganese cluster containing a sandwich-type polyoxometalate. Journal of Coordination Chemistry, 2012, 65, 1451-1458.	2.2	11