List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12025003/publications.pdf Version: 2024-02-01

LINDA M DILADSKI

#	Article	IF	CITATIONS
1	Comparison of a Miniaturized Cassette PCR System with a Commercially Available Platform for Detecting Escherichia coli in Beef Carcass Swabs. Micromachines, 2021, 12, 959.	2.9	Ο
2	Detection of pathogenic Escherichia coli on potentially contaminated beef carcasses using cassette PCR and conventional PCR. BMC Microbiology, 2019, 19, 175.	3.3	9
3	Application of lab-on-a-chip multiplex cassette PCR for the detection of enterohemorrhagic Escherichia coli. BMC Microbiology, 2019, 19, 93.	3.3	3
4	Monitoring food pathogens: Novel instrumentation for cassette PCR testing. PLoS ONE, 2018, 13, e0197100.	2.5	4
5	MS4A4A: a novel cell surface marker for M2 macrophages and plasma cells. Immunology and Cell Biology, 2017, 95, 611-619.	2.3	90
6	Addressing heterogeneity of individual blood cancers: the need for single cell analysis. Cell Biology and Toxicology, 2017, 33, 83-97.	5.3	27
7	Predispositions and Origins of Waldenstrom Macroglobulinemia: Implications from Genetic Analysis. , 2017, , 35-48.		0
8	HMMR acts in the PLK1-dependent spindle positioning pathway and supports neural development. ELife, 2017, 6, .	6.0	41
9	BRCA1 controls the cell division axis and governs ploidy and phenotype in human mammary cells. Oncotarget, 2017, 8, 32461-32475.	1.8	14
10	<i>FGFR3</i> preferentially colocalizes with <i>IGH</i> in the interphase nucleus of multiple myeloma patient Bâ€cells when <i>FGFR3</i> is located outside of CT4. Genes Chromosomes and Cancer, 2016, 55, 962-974.	2.8	3
11	Single-Cell Analysis and Next-Generation Immuno-Sequencing Show That Multiple Clones Persist in Patients with Chronic Lymphocytic Leukemia. PLoS ONE, 2015, 10, e0137232.	2.5	24
12	Spatial regulation of Aurora A activity during mitotic spindle assembly requires RHAMM to correctly localize TPX2. Cell Cycle, 2014, 13, 2248-2261.	2.6	37
13	A Three-dimensional Tissue Culture Model to Study Primary Human Bone Marrow and its Malignancies. Journal of Visualized Experiments, 2014, , .	0.3	11
14	Aberrant Posttranscriptional Processing of Hyaluronan Synthase 1 in Malignant Transformation and Tumor Progression. Advances in Cancer Research, 2014, 123, 67-94.	5.0	11
15	Genotyping Single Nucleotide Polymorphisms in Human Genomic DNA with an Automated and Self-Contained PCR Cassette. Journal of Molecular Diagnostics, 2014, 16, 550-557.	2.8	9
16	Inherited Polymorphisms in Hyaluronan Synthase 1 Predict Risk of Systemic B-Cell Malignancies but Not of Breast Cancer. PLoS ONE, 2014, 9, e100691.	2.5	7
17	Differential nuclear organization of translocationâ€prone genes in nonmalignant B cells from patients with t(14;16) as compared with t(4;14) or t(11;14) myeloma. Genes Chromosomes and Cancer, 2013, 52, 523-537.	2.8	8
18	Sub-microliter scale in-gel loop-mediated isothermal amplification (LAMP) for detection of Mycobacterium tuberculosis. Microfluidics and Nanofluidics, 2013, 14, 731-741.	2.2	7

#	Article	IF	CITATIONS
19	Alteration of Introns in a Hyaluronan Synthase 1 (HAS1) Minigene Convert Pre-Mrna Splicing to the Aberrant Pattern in Multiple Myeloma (MM): MM Patients Harbor Similar Changes. PLoS ONE, 2013, 8, e53469.	2.5	8
20	The Systemic Cytokine Environment Is Permanently Altered in Multiple Myeloma. PLoS ONE, 2013, 8, e58504.	2.5	38
21	Frequent Occurrence of Highly Expanded but Unrelated B-Cell Clones in Patients with Multiple Myeloma. PLoS ONE, 2013, 8, e64927.	2.5	13
22	Inhibition of on-chip PCR using PDMS–glass hybrid microfluidic chips. Microfluidics and Nanofluidics, 2012, 13, 383-398.	2.2	20
23	In non-transplant patients with multiple myeloma, the pre-treatment level of clonotypic cells predicts event-free survival. Molecular Cancer, 2012, 11, 78.	19.2	2
24	Differential positioning and close spatial proximity of translocationâ€prone genes in nonmalignant Bâ€cells from multiple myeloma patients. Genes Chromosomes and Cancer, 2012, 51, 727-742.	2.8	4
25	In multiple myeloma, boneâ€marrow lymphocytes harboring the same chromosomal abnormalities as autologous plasma cells predict poor survival. American Journal of Hematology, 2012, 87, 579-587.	4.1	8
26	Expression, adverse prognostic significance and therapeutic small molecule inhibition of Polo-like kinase 1 in multiple myeloma. Leukemia Research, 2011, 35, 1637-1643.	0.8	14
27	On-chip PCR amplification of genomic and viral templates in unprocessed whole blood. Microfluidics and Nanofluidics, 2011, 10, 697-702.	2.2	30
28	In a patient with biclonal Waldenstrom macroglobulinemia only one clone expands in three-dimensional culture and includes putative cancer stem cells. Leukemia and Lymphoma, 2011, 52, 285-289.	1.3	3
29	Promiscuity of translocation partners in multiple myeloma. Journal of Cellular Biochemistry, 2010, 109, 1085-1094.	2.6	4
30	In-Gel Technology for PCR Genotyping and Pathogen Detection. Analytical Chemistry, 2010, 82, 8079-8087.	6.5	29
31	Multiple myeloma may include microvessel endothelial cells of malignant origin. Leukemia and Lymphoma, 2010, 51, 592-597.	1.3	4
32	Altered Expression of Fibronectin and Collagens I and IV in Multiple Myeloma and Monoclonal Gammopathy of Undetermined Significance. Journal of Histochemistry and Cytochemistry, 2009, 57, 239-247.	2.5	35
33	Aberrant Splice Variants of HAS1 (Hyaluronan Synthase 1) Multimerize with and Modulate Normally Spliced HAS1 Protein. Journal of Biological Chemistry, 2009, 284, 18840-18850.	3.4	28
34	Genetic Abnormalities in Waldenström's Macroglobulinemia. Clinical Lymphoma and Myeloma, 2009, 9, 30-32.	1.4	3
35	Splicing Mutations in the Hyaluronan Synthase I Gene of Patients with Monoclonal Gammopathy of Undetermined Significance Blood, 2009, 114, 2841-2841.	1.4	0
36	Strategies for enhancing the speed and integration of microchip genetic amplification. Electrophoresis, 2008, 29, 4684-4694.	2.4	10

#	Article	IF	CITATIONS
37	An integrated microfluidic chip for chromosome enumeration using fluorescence in situ hybridization. Lab on A Chip, 2008, 8, 2151.	6.0	53
38	The selective Aurora B kinase inhibitor AZD1152 is a potential new treatment for multiple myeloma. British Journal of Haematology, 2008, 140, 295-302.	2.5	58
39	An inexpensive and portable microchip-based platform for integrated RT–PCR and capillary electrophoresis. Analyst, The, 2008, 133, 331.	3.5	99
40	Inherited and acquired variations in the hyaluronan synthase 1 (HAS1) gene may contribute to disease progression in multiple myeloma and Waldenstrom macroglobulinemia. Blood, 2008, 112, 5111-5121.	1.4	30
41	Analysis of clonotypic switch junctions reveals multiple myeloma originates from a single class switch event with ongoing mutation in the isotype-switched progeny. Blood, 2008, 112, 1894-1903.	1.4	16
42	A unique three-dimensional model for evaluating the impact of therapy on multiple myeloma. Blood, 2008, 112, 2935-2945.	1.4	110
43	Multiple Myeloma Includes Phenotypically Defined Subsets of Clonotypic CD20+ B Cells that Persist during Treatment with Rituximab. Clinical Medicine Oncology, 2008, 2, CMO.S615.	0.3	17
44	Molecular Characterization of Waldenstrom's Macroglobulinemia Reveals Frequent Occurrence of Two B-Cell Clones Having Distinct IgH VDJ Sequences. Clinical Cancer Research, 2007, 13, 2005-2013.	7.0	34
45	Microfluidic Chips for Detecting the t(4;14) Translocation and Monitoring Disease during Treatment Using Reverse Transcriptase-Polymerase Chain Reaction Analysis of IgH-MMSET Hybrid Transcripts. Journal of Molecular Diagnostics, 2007, 9, 358-367.	2.8	22
46	Microfluidic Platform for Single Nucleotide Polymorphism Genotyping of the Thiopurine S-Methyltransferase Gene to Evaluate Risk for Adverse Drug Events. Journal of Molecular Diagnostics, 2007, 9, 521-529.	2.8	27
47	Establishment of BCWM.1 cell line for Waldenström's macroglobulinemia with productive in vivo engraftment in SCID-hu mice. Experimental Hematology, 2007, 35, 1366-1375.	0.4	61
48	Germline and Somatic Mutations in the Hyaluronan Synthase–1 (HAS1) Gene May Contribute to Oncogenesis in Multiple Myeloma (MM) and Waldenstrom's Macroglobulinemia (WM) Blood, 2007, 110, 2488-2488.	1.4	0
49	Pre-Clinical Validation of Polo-Like Kinase 1 as a Therapeutic Target in Multiple Myeloma with the Selective Inhibitor BI2536 Blood, 2007, 110, 2514-2514.	1.4	0
50	Ten years and counting: so what do we know about t(4;14)(p16;q32) multiple myeloma. Leukemia and Lymphoma, 2006, 47, 2289-2300.	1.3	90
51	Impaired class switch recombination (CSR) in Waldenstrol^m macroglobulinemia (WM) despite apparently normal CSR machinery. Blood, 2006, 107, 2920-2927.	1.4	39
52	Automated screening using microfluidic chip-based PCR and product detection to assess risk of BK virus-associated nephropathy in renal transplant recipients. Electrophoresis, 2006, 27, 3753-3763.	2.4	70
53	Aurora Kinases as Therapeutic Targets in Multiple Myeloma Blood, 2006, 108, 847-847.	1.4	12
54	Genomic Instability in Multiple Myeloma: Inducible Transfectants Provide a Model To Define the Role of RHAMM and Centrosome/Mitotic Spindle Stability in Myelomagenesis Blood, 2006, 108, 5037-5037.	1.4	0

#	Article	IF	CITATIONS
55	SSX Cancer Testis Antigens are Expressed in Most Multiple Myeloma Patients. Journal of Immunotherapy, 2005, 28, 564-575.	2.4	53
56	Intronic splicing of hyaluronan synthase 1 (HAS1): a biologically relevant indicator of poor outcome in multiple myeloma. Blood, 2005, 105, 4836-4844.	1.4	61
57	Overexpression of transcripts originating from the MMSET locus characterizes all t(4;14)(p16;q32)-positive multiple myeloma patients. Blood, 2005, 105, 4060-4069.	1.4	159
58	Sensitive detection using microfluidics technology of single cell PCR products from high and low abundance IgH VDJ templates in multiple myeloma. Journal of Immunological Methods, 2005, 305, 94-105.	1.4	12
59	Identification of Clonotypic IgH VDJ Sequences in Multiple Myeloma. , 2005, 113, 121-144.		7
60	A potential role for centrosomal deregulation within IgH translocation-positive myeloma. Medical Hypotheses, 2005, 65, 915-921.	1.5	4
61	Origins of Waldenström's Macroglobulinemia: Does It Arise from an Unusual B-Cell Precursor?. Clinical Lymphoma and Myeloma, 2005, 5, 217-219.	2.1	28
62	Potential Impact of a Single Nucleotide Polymorphism in the Hyaluronan Synthase 1 Gene in WaldenstrA¶m's Macroglobulinemia. Clinical Lymphoma and Myeloma, 2005, 5, 253-256.	2.1	10
63	Circulating B Lymphocytes from Patients with Multiple Myeloma Harbour T(4;14) Translocations and Chromosome 13 Deletions Blood, 2005, 106, 500-500.	1.4	4
64	Microfluidic Devices for Molecular Monitoring of Clonotypic IgH VDJ Signatures and the T(4;14) Translocation in Multiple Myeloma Blood, 2005, 106, 1536-1536.	1.4	1
65	Receptor for hyaluronan-mediated motility correlates with centrosome abnormalities in multiple myeloma and maintains mitotic integrity. Cancer Research, 2005, 65, 850-60.	0.9	73
66	Genetics and Cytogenetics of Multiple Myeloma. Cancer Research, 2004, 64, 1546-1558.	0.9	642
67	Clonotypic IgM V/D/J sequence analysis in Waldenstrom macroglobulinemia suggests an unusual B-cell origin and an expansion of polyclonal B cells in peripheral blood. Blood, 2004, 104, 2134-2142.	1.4	95
68	RHAMM expression and isoform balance predict aggressive disease and poor survival in multiple myeloma. Blood, 2004, 104, 1151-1158.	1.4	85
69	The Malignant Hierarchy in Multiple Myeloma: Relationships between Malignant Cells and Bone Disease. Cancer Metastasis - Biology and Treatment, 2004, , 109-138.	0.1	3
70	VDJ-Switch Region Analysis in Multiple Myeloma Patients Reveals Homogeneity and Long-Term Stability of Switch Junctions, and Ongoing Mutation Upstream of Switch Mu Blood, 2004, 104, 1414-1414.	1.4	1
71	Mutator Genes UDG and AID Appear To Be Normal in Class-Switch Deficient and Clonally Homogeneous Waldenstrom's Macroglobulinemias Having Either Germline or Hypermutated Clonotypic IgH VDJ Blood, 2004, 104, 1359-1359.	1.4	0
72	Abnormal expression of hyaluronan synthases in patients with Waldenstrom's macroglobulimenia. Seminars in Oncology, 2003, 30, 165-168.	2.2	25

#	Article	IF	CITATIONS
73	The malignant clone in Waldenstrom's macroglobulinemia. Seminars in Oncology, 2003, 30, 132-135.	2.2	22
74	Discussion on the safety of 6-mercaptopurine for childbearing patients with inflammatory bowel disease: a retrospective cohort study. Gastroenterology, 2003, 125, 1562.	1.3	1
75	RHAMM Is a Centrosomal Protein That Interacts with Dynein and Maintains Spindle Pole Stability. Molecular Biology of the Cell, 2003, 14, 2262-2276.	2.1	167
76	In multiple myeloma, t(4;14)(p16;q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood, 2003, 101, 1520-1529.	1.4	356
77	CD20-Directed Serotherapy in Patients With Multiple Myeloma: Biologic Considerations and Therapeutic Applications. Journal of Immunotherapy, 2002, 25, 72-81.	2.4	123
78	Leukemic B cells clonally identical to myeloma plasma cells are myelomagenic in NOD/SCID mice. Experimental Hematology, 2002, 30, 221-228.	0.4	59
79	Intraclonal homogeneity of clonotypic immunoglobulin M and diversity of nonclinical post-switch isotypes in multiple myeloma: insights into the evolution of the myeloma clone. Clinical Cancer Research, 2002, 8, 502-13.	7.0	18
80	Clonotypic myeloma cells able to xenograft myeloma to nonobese diabetic severe combined immunodeficient mice copurify with CD34 (+) hematopoietic progenitors. Clinical Cancer Research, 2002, 8, 3198-204.	7.0	46
81	Persistent preswitch clonotypic myeloma cells correlate with decreased survival: evidence for isotype switching within the myeloma clone. Blood, 2001, 98, 2791-2799.	1.4	52
82	Expression of IL-6 and IL-6 receptors by circulating clonotypic B cells in multiple myeloma. Experimental Hematology, 2001, 29, 1076-1081.	0.4	36
83	Myeloma progenitors in the blood of patients with aggressive or minimal disease: engraftment and self-renewal of primary human myeloma in the bone marrow of NOD SCID mice. Blood, 2000, 95, 1056-1065.	1.4	127
84	Elevated soluble MUC1 levels and decreased anti-MUC1 antibody levels in patients with multiple myeloma. Blood, 2000, 96, 3147-3153.	1.4	86
85	Balancing Thymocyte Adhesion and Motility: A Functional Linkage Between β1 Lntegrins and The Motility Receptor RHAMM. Autoimmunity, 2000, 7, 209-225.	0.6	19
86	Selective targeting of immunoliposomal doxorubicin against human multiple myeloma in vitro and ex vivo. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1466, 205-220.	2.6	47
87	Elevated soluble MUC1 levels and decreased anti-MUC1 antibody levels in patients with multiple myeloma. Blood, 2000, 96, 3147-3153.	1.4	14
88	Overexpression of the Receptor for Hyaluronan-Mediated Motility (RHAMM) Characterizes the Malignant Clone in Multiple Myeloma: Identification of Three Distinct RHAMM Variants. Blood, 1999, 93, 1684-1696.	1.4	92
89	Muc-1 Core Protein Is Expressed on Multiple Myeloma Cells and Is Induced by Dexamethasone. Blood, 1999, 93, 1287-1298.	1.4	133
90	Potential Role for Hyaluronan and the Hyaluronan Receptor RHAMM in Mobilization and Trafficking of Hematopoietic Progenitor Cells. Blood, 1999, 93, 2918-2927.	1.4	83

#	Article	IF	CITATIONS
91	Cellular Trafficking and Cytotoxicity of Anti-Cd19-Targeted Liposomal Doxorubicin in B Lymphoma Cells. Journal of Liposome Research, 1999, 9, 199-228.	3.3	67
92	Drug Resistance in Multiple Myeloma: Novel Therapeutic Targets Within the Malignant Clone. Leukemia and Lymphoma, 1999, 32, 199-210.	1.3	10
93	Muc-1 Core Protein Is Expressed on Multiple Myeloma Cells and Is Induced by Dexamethasone. Blood, 1999, 93, 1287-1298.	1.4	9
94	Overexpression of the Receptor for Hyaluronan-Mediated Motility (RHAMM) Characterizes the Malignant Clone in Multiple Myeloma: Identification of Three Distinct RHAMM Variants. Blood, 1999, 93, 1684-1696.	1.4	3
95	Potential Role for Hyaluronan and the Hyaluronan Receptor RHAMM in Mobilization and Trafficking of Hematopoietic Progenitor Cells. Blood, 1999, 93, 2918-2927.	1.4	7
96	During human thymic development, β1 integrins regulate adhesion, motility, and the outcome of RHAMM/hyaluronan engagement. Journal of Leukocyte Biology, 1998, 64, 781-790.	3.3	15
97	A High Frequency of Circulating B Cells Share Clonotypic Ig Heavy-Chain VDJ Rearrangements With Autologous Bone Marrow Plasma Cells in Multiple Myeloma, as Measured by Single-Cell and In Situ Reverse Transcriptase-Polymerase Chain Reaction. Blood, 1998, 92, 2844-2855.	1.4	134
98	A High Frequency of Circulating B Cells Share Clonotypic Ig Heavy-Chain VDJ Rearrangements With Autologous Bone Marrow Plasma Cells in Multiple Myeloma, as Measured by Single-Cell and In Situ Reverse Transcriptase-Polymerase Chain Reaction. Blood, 1998, 92, 2844-2855.	1.4	7
99	CD34+ Cells in the Blood of Patients With Multiple Myeloma Express CD19 and IgH mRNA and Have Patient-Specific IgH VDJ Gene Rearrangements. Blood, 1997, 89, 1824-1833.	1.4	107
100	Deficient Drug Transporter Function of Bone Marrow–Localized and Leukemic Plasma Cells in Multiple Myeloma. Blood, 1997, 90, 3751-3759.	1.4	55
101	CD34+ Cells in the Blood of Patients With Multiple Myeloma Express CD19 and IgH mRNA and Have Patient-Specific IgH VDJ Gene Rearrangements. Blood, 1997, 89, 1824-1833.	1.4	8
102	Circulating Clonotypic B Cells in the Biology of Multiple Myeloma: Speculations on the Origin of Myeloma. Leukemia and Lymphoma, 1996, 22, 375-383.	1.3	58
103	Multidrug transporter p-glycoprotein 170 as a differentiation antigen on normal human lymphocytes and thymocytes: Modulation with differentiation stage and during aging. American Journal of Hematology, 1995, 49, 323-335.	4.1	71
104	Intrinsic Expression of the Multidrug Transporter, P-Glycoprotein 170, in Multiple Myeloma: Implications for Treatment. Leukemia and Lymphoma, 1995, 17, 367-374.	1.3	37
105	RHAMM, a Receptor for Hyaluronan-Mediated Motility, on Normal Human Lymphocytes, Thymocytes and Malignant B Cells: a Mediator in B cell Malignancy?. Leukemia and Lymphoma, 1994, 14, 363-374.	1.3	86
106	Differential modulation of human multinegative (CD3 ^{â^'} 4 ^{â^'} 8 ^{â^'}) thymocyte proliferation by monoclonal antibodies to CD45RA or to CD45. Immunology and Cell Biology, 1994, 72, 292-299.	2.3	2
107	ANALYSIS OF PERIPHERAL BLOOD LYMPHOCYTE POPULATIONS AND IMMUNE FUNCTION FROM CHILDREN EXPOSED TO CYCLOSPORINE OR TO AZATHIOPRINE IN UTERO. Transplantation, 1994, 57, 133-143.	1.0	70
108	Expression of multiple β1 integrins on circulating monoclonal B cells in patients with multiple myeloma. American Journal of Hematology, 1993, 43, 29-36.	4.1	64

#	Article	IF	CITATIONS
109	CD45 isoform transitions on multinegative human thymocytes differentiatingin vitromimic patterns predicted for selective eventsin vivo. Immunology and Cell Biology, 1993, 71, 289-301.	2.3	13
110	Theoretical Article Adhesive interactions in thymic development: Does selective expression of CD45 isoforms promote stageâ€specific microclustering in the assembly of functional adhesive complexes on differentiating T lineage lymphocytes?. Immunology and Cell Biology, 1993, 71, 59-69.	2.3	10
111	Sequential maturation stages of monoclonal B lineage cells from blood, spleen, lymph node, and bone marrow from a terminal myeloma patient. American Journal of Hematology, 1992, 41, 199-208.	4.1	16
112	Monoclonal Circulating B Cells in Multiple Myeloma. Hematology/Oncology Clinics of North America, 1992, 6, 297-322.	2.2	126
113	Transitions in CD45 isoform expression indicate continuous differentiation of a monoclonal CD5+ CD11b+ B lineage in Waldenstrom's macroglobulinemia. American Journal of Hematology, 1991, 37, 20-30.	4.1	36
114	Localization of endogenous galactoside-binding lectin during morphogenesis ofXenopus laevis. Anatomy and Embryology, 1990, 182, 319-327.	1.5	11
115	Cell generation within human thymic subsets defined by selective expression of CD45 (T200) isoforms. Human Immunology, 1990, 27, 333-347.	2.4	20
116	Transition in CD45 isoform expression during differentiation of normal and abnormal B cells. International Immunology, 1989, 1, 229-236.	4.0	72
117	Definition of the thymic generative lineage by selective expression of high molecular weight isoforms of CD45 (T200). European Journal of Immunology, 1989, 19, 589-597.	2.9	108
118	Abnormalities in lymphocyte profile and specificity repertoire of patients with Waldenstrom's macroglobulinemia, multiple myeloma, and IgM monoclonal gammopathy of undetermined significance. American Journal of Hematology, 1989, 30, 53-60.	4.1	37
119	Selective expression of CD45 isoforms and of maturation antigens during human thymocyte differentiation: observations and hypothesis. Immunology Letters, 1989, 21, 187-198.	2.5	42
120	Selective loss of CD4+ CD45R+ T cells in peripheral blood of multiple myeloma patients. Journal of Clinical Immunology, 1988, 8, 259-265.	3.8	49
121	Soluble Antigen-Specific Helper Molecules Active in the Induction of Cytotoxic T Lymphocytes. Annals of the New York Academy of Sciences, 1988, 532, 136-148.	3.8	0
122	Analysis of immunodeficiency in multiple myeloma: Observations and hypothesis. Journal of Clinical Laboratory Analysis, 1987, 1, 214-228.	2.1	16
123	Deficiency of mature B and T lymphocyte subsets in the blood of non-Hodgkin lymphoma patients. American Journal of Hematology, 1987, 26, 125-134.	4.1	3
124	Humoral immune deficiency in multiple myeloma patients due to compromised B-cell function. Journal of Clinical Immunology, 1986, 6, 491-501.	3.8	52
125	Specificity repertoire of lymphocytes from multiple myeloma patients. I. High frequency of B cells specific for idiotypic and F(ab?)2-region determinants on immunoglobulin. Journal of Clinical Immunology, 1985, 5, 275-284.	3.8	21
126	Suppressor T cells derived from early postnatal murine spleen inhibit cytotoxic T-cell responses. Cellular Immunology, 1981, 58, 345-355.	3.0	9

#	Article	IF	CITATIONS
127	Surface markers on the T cells that regulate cytotoxic T-cell responses. Immunogenetics, 1980, 10, 521-533.	2.4	16
128	Antigen-specific helper T cells are essential for cytotoxic T cell responses to metabolically inactivated stimulator cells. European Journal of Immunology, 1979, 9, 454-460.	2.9	21
129	Antigen-specific suppression of cytotoxic T cell responses in mice. I. Suppressor T cells are not cytotoxic cells. European Journal of Immunology, 1978, 8, 504-511.	2.9	41
130	An analysis of B Cell memory. Cellular Immunology, 1978, 40, 376-388.	3.0	7
131	Clonal expansion of IgM B memory cells in vitro. Cellular Immunology, 1978, 40, 389-394.	3.0	3
132	A new system for highly efficient generation of alloantigen-specific cytotoxic T cells. European Journal of Immunology, 1976, 6, 906-909.	2.9	7
133	Generation of antibody dieversity. IV. Variation within single clones of antibody-forming cells developingin vivo. European Journal of Immunology, 1975, 5, 10-16.	2.9	16
134	Generation of antibody diversity. I. Kinetics of production of different antibody specificities during the course of an immune response. European Journal of Immunology, 1974, 4, 319-326.	2.9	34
135	The generation of antibody diversity. II. Plaque morphology as a simple marker for antibody specificity at the single-cell level. European Journal of Immunology, 1974, 4, 757-761.	2.9	17
136	The generation of antibody diversity. III. Variation in the specificity of antibody produced within single clones of antibody-forming cellsin vitro. European Journal of Immunology, 1974, 4, 762-767.	2.9	29