Jonathan G C Veinot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1202490/publications.pdf

Version: 2024-02-01

76294 82499 5,821 131 40 72 citations h-index g-index papers 146 146 146 6123 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Exploring Structural Nuances in Germanium Halide Perovskites Using Solid-State ⁷³ Ge and ¹³³ Cs NMR Spectroscopy. Journal of Physical Chemistry Letters, 2022, 13, 1687-1696.	2.1	9
2	(Invited) Realizing Narrow Bandwidth Visible Photoluminescence from Colloidal Silicon Quantum Dots. ECS Meeting Abstracts, 2022, MA2022-01, 1079-1079.	0.0	O
3	Frustrated Lewis Pair Chelation as a Vehicle for Lowâ€Temperature Semiconductor Element and Polymer Deposition. Angewandte Chemie - International Edition, 2021, 60, 228-231.	7.2	21
4	"Turning the dials― controlling synthesis, structure, composition, and surface chemistry to tailor silicon nanoparticle properties. Nanoscale, 2021, 13, 16379-16404.	2.8	11
5	Hollow Mesoporous Carbon Nanospheres Decorated with Metal Oxide Nanoparticles as Efficient Earthâ∈Abundant Zincâ∈Air Battery Catalysts. ChemElectroChem, 2021, 8, 1455-1463.	1.7	1
6	Hollow Mesoporous Carbon Nanospheres Decorated with Metal Oxide Nanoparticles as Efficient Earthâ€Abundant Zincâ€Air Battery Catalysts. ChemElectroChem, 2021, 8, 1392-1392.	1.7	1
7	Synthesis, Properties, and Derivatization of Poly(dihydrogermane): A Germanium-Based Polyethylene Analogue. ACS Nano, 2021, 15, 9368-9378.	7.3	6
8	Silicon Quantum Dot–Polymer Fabry–Pérot Resonators with Narrowed and Tunable Emissions. ACS Applied Materials & Double Emissions. ACS Applied Materials & Double Emissions. ACS	4.0	8
9	Tailoring Ordered Mesoporous Titania Films via Introducing Germanium Nanocrystals for Enhanced Electron Transfer Photoanodes for Photovoltaic Applications. Advanced Functional Materials, 2021, 31, 2102105.	7.8	9
10	Surfaceâ€Anisotropic Janus Silicon Quantum Dots via Masking on 2D Silicon Nanosheets. Advanced Materials, 2021, 33, e2100288.	11.1	7
11	Surfaceâ€Anisotropic Janus Silicon Quantum Dots via Masking on 2D Silicon Nanosheets (Adv. Mater.) Tj ETQq1	1 0,7843	14 _{-f} gBT/Over
12	Tailoring B-doped silicon nanocrystal surface chemistry <i>via</i> phosphorus pentachloride – mediated surface alkoxylation. Nanoscale, 2021, 13, 18281-18292.	2.8	4
13	Silicon Surface Passivation for Silicon-Colloidal Quantum Dot Heterojunction Photodetectors. ACS Nano, 2021, 15, 18429-18436.	7.3	20
14	Mesoporous GeO _{<i>x</i>} /Ge/C as a Highly Reversible Anode Material with High Specific Capacity for Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 47002-47009.	4.0	18
15	Functional Bio-inorganic Hybrids from Silicon Quantum Dots and Biological Molecules. ACS Applied Materials & Samp; Interfaces, 2020, 12, 52251-52270.	4.0	23
16	Mn ₃ O ₄ nanoparticle-decorated hollow mesoporous carbon spheres as an efficient catalyst for oxygen reduction reaction in Zn–air batteries. Nanoscale Advances, 2020, 2, 3367-3374.	2.2	12
17	Nonvolatile Memristive Switching in Self-assembled Nanoparticle Dimers. ACS Applied Electronic Materials, 2020, 2, 1099-1105.	2.0	3
18	A Tale of Seemingly "ldentical―Silicon Quantum Dot Families: Structural Insight into Silicon Quantum Dot Photoluminescence. Chemistry of Materials, 2020, 32, 6838-6846.	3.2	22

#	Article	IF	CITATIONS
19	Dehydrocoupling $\hat{a}\in$ an alternative approach to functionalizing germanium nanoparticle surfaces. Nanoscale, 2020, 12, 6271-6278.	2.8	2
20	Thermally Induced Dehydrogenative Coupling of Organosilanes and H-Terminated Silicon Quantum Dots onto Germanane Surfaces. Chemistry of Materials, 2020, 32, 4536-4543.	3.2	8
21	Ratiometric Detection of Nerve Agents by Coupling Complementary Properties of Silicon-Based Quantum Dots and Green Fluorescent Protein. ACS Applied Materials & Samp; Interfaces, 2019, 11, 33478-33488.	4.0	28
22	Endogenous dynamic nuclear polarization NMR of hydride-terminated silicon nanoparticles. Solid State Nuclear Magnetic Resonance, 2019, 100, 77-84.	1.5	18
23	Ensemble Effects in the Temperatureâ€Dependent Photoluminescence of Silicon Nanocrystals. Chemistry - A European Journal, 2019, 25, 3061-3067.	1.7	10
24	Highly Conducting, Transparent PEDOT:PSS Polymer Electrodes from Postâ€Treatment with Weak and Strong Acids. Advanced Electronic Materials, 2019, 5, 1800654.	2.6	87
25	Silicon Nanoparticles: Are They Crystalline from the Core to the Surface?. Chemistry of Materials, 2019, 31, 678-688.	3.2	49
26	The influence of surface functionalization methods on the performance of silicon nanocrystal LEDs. Nanoscale, 2018, 10, 10337-10342.	2.8	24
27	Superhydrophobic Silicon Nanocrystal–Silica Aerogel Hybrid Materials: Synthesis, Properties, and Sensing Application. Langmuir, 2018, 34, 4888-4896.	1.6	23
28	Radical-Initiated and Thermally Induced Hydrogermylation of Alkenes on the Surfaces of Germanium Nanosheets. Chemistry of Materials, 2018, 30, 2274-2280.	3.2	30
29	Application of nanoparticle tracking analysis for characterising the fate of engineered nanoparticles in sediment-water systems. Journal of Environmental Sciences, 2018, 64, 62-71.	3.2	28
30	Lewis Acid Protection: A Method Toward Synthesizing Phase Transferable Luminescent Silicon Nanocrystals. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700620.	0.8	2
31	Mixed Surface Chemistry: An Approach to Highly Luminescent Biocompatible Amphiphilic Silicon Nanocrystals. Chemistry of Materials, 2018, 30, 8925-8931.	3.2	18
32	Interfacing enzymes with silicon nanocrystals through the thiol–ene reaction. Nanoscale, 2018, 10, 18706-18719.	2.8	18
33	Size and Surface Effects of Silicon Nanocrystals in Graphene Aerogel Composite Anodes for Lithium Ion Batteries. Chemistry of Materials, 2018, 30, 7782-7792.	3.2	50
34	Functional Bioinorganic Hybrids from Enzymes and Luminescent Silicon-Based Nanoparticles. Langmuir, 2018, 34, 6556-6569.	1.6	16
35	Ultrabright Fluorescent and Lasing Microspheres from a Conjugated Polymer. Advanced Functional Materials, 2018, 28, 1802759.	7.8	20
36	Water-Assisted Transfer Patterning of Nanomaterials. Langmuir, 2018, 34, 9418-9423.	1.6	8

#	Article	IF	CITATIONS
37	Thermally Induced Evolution of "Ge(OH) < sub>2 < /sub>― Controlling the Formation of Oxide-Embedded Ge Nanocrystals. Journal of Physical Chemistry C, 2018, 122, 17518-17525.	1.5	9
38	The influence of conjugated alkynyl(aryl) surface groups on the optical properties of silicon nanocrystals: photoluminescence through in-gap states. Nanotechnology, 2018, 29, 355705.	1.3	7
39	Synthesis and Surface Functionalization of Hydride-Terminated Ge Nanocrystals Obtained from the Thermal Treatment of Ge(OH) < sub > 2 < /sub > . Langmuir, 2017, 33, 8757-8765.	1.6	15
40	In situ IR-spectroscopy as a tool for monitoring the radical hydrosilylation process on silicon nanocrystal surfaces. Nanoscale, 2017, 9, 8489-8495.	2.8	7
41	Lewis Acid Induced Functionalization of Photoluminescent 2D Silicon Nanosheets for the Fabrication of Functional Hybrid Films. Advanced Functional Materials, 2017, 27, 1606764.	7.8	20
42	Instantaneous Functionalization of Chemically Etched Silicon Nanocrystal Surfaces. Angewandte Chemie, 2017, 129, 6169-6173.	1.6	6
43	Transparent Wood: Luminescent Transparent Wood (Advanced Optical Materials 1/2017). Advanced Optical Materials, 2017, 5, .	3.6	0
44	Light-Converting Polymer/Si Nanocrystal Composites with Stable 60–70% Quantum Efficiency and Their Glass Laminates. ACS Applied Materials & Enterfaces, 2017, 9, 30267-30272.	4.0	57
45	Revisiting an Ongoing Debate: What Role Do Surface Groups Play in Silicon Nanocrystal Photoluminescence?. ACS Photonics, 2017, 4, 1920-1929.	3.2	56
46	Instantaneous Functionalization of Chemically Etched Silicon Nanocrystal Surfaces. Angewandte Chemie - International Edition, 2017, 56, 6073-6077.	7.2	24
47	Humic acid ameliorates nanoparticle-induced developmental toxicity in zebrafish. Environmental Science: Nano, 2017, 4, 127-137.	2.2	29
48	From Hydrogen Silsesquioxane to Functionalized Silicon Nanocrystals. Chemistry of Materials, 2017, 29, 80-89.	3.2	60
49	Luminescent Transparent Wood. Advanced Optical Materials, 2017, 5, 1600834.	3.6	116
50	Phosphorus Pentachloride Initiated Functionalization of Silicon Nanocrystals. Langmuir, 2017, 33, 8766-8773.	1.6	34
51	Silicon Nanocrystals and Siliconâ€Polymer Hybrids: Synthesis, Surface Engineering, and Applications. Angewandte Chemie - International Edition, 2016, 55, 2322-2339.	7.2	218
52	Grafting Poly(3â€hexylthiophene) from Silicon Nanocrystal Surfaces: Synthesis and Properties of a Functional Hybrid Material with Direct Interfacial Contact. Angewandte Chemie - International Edition, 2016, 55, 7393-7397.	7.2	12
53	Synthesis and properties of covalently linked photoluminescent magnetic magnetite nanoparticle-silicon nanocrystal hybrids. MRS Advances, 2016, 1, 2321-2329.	0.5	2
54	Synthesis and Properties of Luminescent Silicon Nanocrystal/Silica Aerogel Hybrid Materials. Chemistry of Materials, 2016, 28, 3877-3886.	3.2	31

#	Article	IF	Citations
55	Alkoxy-Terminated Si Surfaces: A New Reactive Platform for the Functionalization and Derivatization of Silicon Quantum Dots. Journal of the American Chemical Society, 2016, 138, 7114-7120.	6.6	41
56	Application of Engineered Si Nanoparticles in Light-Induced Advanced Oxidation Remediation of a Water-Borne Model Contaminant. ACS Nano, 2016, 10, 5405-5412.	7.3	24
57	Silicon nanocrystals for the development of sensing platforms. Journal of Materials Chemistry C, 2016, 4, 4836-4846.	2.7	58
58	Photostable Polymer/Si Nanocrystal Bulk Hybrids with Tunable Photoluminescence. ACS Photonics, 2016, 3, 1575-1580.	3.2	22
59	Nanosilver and Nano Zero-Valent Iron Exposure Affects Nutrient Exchange Across the Sediment–Water Interface. Bulletin of Environmental Contamination and Toxicology, 2016, 96, 83-89.	1.3	5
60	Siliciumâ€Nanokristalle und Siliciumâ€Polymerâ€Hybridmaterialien: Synthese, Oberflähenmodifikation und Anwendungen. Angewandte Chemie, 2016, 128, 2366-2384.	1.6	22
61	Photoluminescence through in-gap states in phenylacetylene functionalized silicon nanocrystals. Nanoscale, 2016, 8, 7849-7853.	2.8	30
62	Detection of nitroaromatics in the solid, solution, and vapor phases using silicon quantum dot sensors. Nanotechnology, 2016, 27, 105501.	1.3	41
63	Surface-Initiated Group-Transfer Polymerization – A Catalytic Approach to Stimuli-Responsive Silicon Nanocrystal Hybrid Materials. Materials Research Society Symposia Proceedings, 2015, 1770, 13-18.	0.1	1
64	Spherical nitrogen-doped hollow mesoporous carbon as an efficient bifunctional electrocatalyst for Zn–air batteries. Nanoscale, 2015, 7, 20547-20556.	2.8	68
65	Do particle size and surface functionality affect uptake and depuration of gold nanoparticles by aquatic invertebrates?. Environmental Toxicology and Chemistry, 2015, 34, 850-859.	2.2	17
66	Influence of Halides on the Optical Properties of Silicon Quantum Dots. Chemistry of Materials, 2015, 27, 1153-1156.	3.2	71
67	Near-Unity Internal Quantum Efficiency of Luminescent Silicon Nanocrystals with Ligand Passivation. ACS Nano, 2015, 9, 7097-7104.	7.3	118
68	Toxicity of silver nanoparticles against bacteria, yeast, and algae. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	94
69	Evolution of the Ultrafast Photoluminescence of Colloidal Silicon Nanocrystals with Changing Surface Chemistry. ACS Photonics, 2015, 2, 595-605.	3.2	60
70	Photoluminescent silicon nanocrystal-polymer hybrid materials via surface initiated reversible addition–fragmentation chain transfer (RAFT) polymerization. Nanoscale, 2015, 7, 7811-7818.	2.8	20
71	Charge transfer state emission dynamics in blue-emitting functionalized silicon nanocrystals. Physical Chemistry Chemical Physics, 2015, 17, 30125-30133.	1.3	37
72	Direct Evaluation of the Quantum Confinement Effect in Single Isolated Ge Nanocrystals. Journal of Physical Chemistry Letters, 2015, 6, 3396-3402.	2.1	36

#	Article	IF	Citations
73	Radical Initiated Hydrosilylation on Silicon Nanocrystal Surfaces: An Evaluation of Functional Group Tolerance and Mechanistic Study. Langmuir, 2015, 31, 10540-10548.	1.6	51
74	Functionalization of Hydrideâ€Terminated Photoluminescent Silicon Nanocrystals with Organolithium Reagents. Chemistry - A European Journal, 2015, 21, 2755-2758.	1.7	22
75	One-pot synthesis of functionalized germanium nanocrystals from a single source precursor. Nanoscale, 2015, 7, 2241-2244.	2.8	50
76	Photoluminescent silicon nanocrystals with chlorosilane surfaces – synthesis and reactivity. Nanoscale, 2015, 7, 914-918.	2.8	22
77	Oxasilacycles Leading to UV-Curable Polymers: Synthesis and Application. Macromolecules, 2014, 47, 8497-8505.	2.2	5
78	Diazonium Salts as Grafting Agents and Efficient Radicalâ€Hydrosilylation Initiators for Freestanding Photoluminescent Silicon Nanocrystals. Chemistry - A European Journal, 2014, 20, 4212-4216.	1.7	25
79	Borane-Catalyzed Room-Temperature Hydrosilylation of Alkenes/Alkynes on Silicon Nanocrystal Surfaces. Journal of the American Chemical Society, 2014, 136, 17914-17917.	6.6	80
80	Interpreting Deposition Behavior of Polydisperse Surface-Modified Nanoparticles Using QCM-D and Sand-Packed Columns. Environmental Engineering Science, 2014, 31, 326-337.	0.8	20
81	Tuning silicon quantum dot luminescence via surface groups. Physica Status Solidi (B): Basic Research, 2014, 251, 2216-2220.	0.7	12
82	Thermoresponsive and Photoluminescent Hybrid Silicon Nanoparticles by Surfaceâ€Initiated Group Transfer Polymerization of Diethyl Vinylphosphonate. Angewandte Chemie - International Edition, 2014, 53, 12494-12497.	7.2	21
83	Hybrid Materials: Highly Luminescent Covalently Linked Silicon Nanocrystal/Polystyrene Hybrid Functional Materials: Synthesis, Properties, and Processability (Adv. Funct. Mater. 10/2014). Advanced Functional Materials, 2014, 24, 1344-1344.	7.8	1
84	Mechanistic insights into the effect of nanoparticles on zebrafish hatch. Nanotoxicology, 2014, 8, 295-304.	1.6	83
85	Highly Luminescent Covalently Linked Silicon Nanocrystal/Polystyrene Hybrid Functional Materials: Synthesis, Properties, and Processability. Advanced Functional Materials, 2014, 24, 1345-1353.	7.8	53
86	Regulatory ecotoxicity testing of engineered nanoparticles: are the results relevant to the natural environment?. Nanotoxicology, 2014, 8, 583-592.	1.6	37
87	Detection of high-energy compounds using photoluminescent silicon nanocrystal paper based sensors. Nanoscale, 2014, 6, 2608-2612.	2.8	88
88	Water-soluble photoluminescent <scp>d</scp> -mannose and <scp>l</scp> -alanine functionalized silicon nanocrystals and their application to cancer cell imaging. Journal of Materials Chemistry B, 2014, 2, 8427-8433.	2.9	37
89	Chloride Surface Terminated Silicon Nanocrystal Mediated Synthesis of Poly(3-hexylthiophene). Journal of the American Chemical Society, 2014, 136, 15130-15133.	6.6	21
90	Surfactant-free synthesis of GeO ₂ nanocrystals with controlled morphologies. Chemical Communications, 2014, 50, 6101-6104.	2.2	24

#	Article	IF	Citations
91	Light-Induced Evolution of Silicon Quantum Dot Surface Chemistryâ€"Implications for Photoluminescence, Sensing, and Reactivity. Chemistry of Materials, 2014, 26, 5467-5474.	3.2	7
92	Ultranarrow Luminescence Linewidth of Silicon Nanocrystals and Influence of Matrix. ACS Photonics, 2014, 1, 998-1005.	3.2	67
93	Size-independent organosilane functionalization of silicon nanocrystals using Wilkinson's catalyst. Canadian Journal of Chemistry, 2014, 92, 951-957.	0.6	11
94	Size <i>vs</i> Surface: Tuning the Photoluminescence of Freestanding Silicon Nanocrystals Across the Visible Spectrum <i>via</i> Surface Groups. ACS Nano, 2014, 8, 9636-9648.	7.3	293
95	Widespread Nanoparticle-Assay Interference: Implications for Nanotoxicity Testing. PLoS ONE, 2014, 9, e90650.	1.1	225
96	Low temperature synthesis of silicon carbide nanomaterials using a solid-state method. Chemical Communications, 2013, 49, 7004.	2.2	70
97	Red States versus Blue States in Colloidal Silicon Nanocrystals: Exciton Sequestration into Low-Density Traps. Journal of Physical Chemistry Letters, 2013, 4, 3806-3812.	2.1	44
98	Chemical Insight into the Origin of Red and Blue Photoluminescence Arising from Freestanding Silicon Nanocrystals. ACS Nano, 2013, 7, 2676-2685.	7.3	267
99	Cytotoxicity of surface-functionalized silicon and germanium nanoparticles: the dominant role of surface charges. Nanoscale, 2013, 5, 4870.	2.8	161
100	Surface-Induced Alkene Oligomerization: Does Thermal Hydrosilylation Really Lead to Monolayer Protected Silicon Nanocrystals?. Journal of the American Chemical Society, 2013, 135, 17595-17601.	6.6	83
101	Shape Evolution of Faceted Silicon Nanocrystals upon Thermal Annealing in an Oxide Matrix. Materials Research Society Symposia Proceedings, 2013, 1536, 207-212.	0.1	1
102	Size-controlled solid state synthesis of luminescent silicon nanocrystals using Stöber silica particles. CrystEngComm, 2012, 14, 7576.	1.3	31
103	Frontispiece: Size independent blue luminescence in nitrogen passivated silicon nanocrystals (Phys.) Tj ETQq1 1 1843-1843.	0.784314 o.8	rgBT /Overlo
104	Understanding the Formation of Elemental Germanium by Thermolysis of Sol-Gel Derived Organogermanium Oxide Polymers. Chemistry of Materials, 2012, 24, 1283-1291.	3.2	22
105	Wavelength-Controlled Etching of Silicon Nanocrystals. Chemistry of Materials, 2012, 24, 346-352.	3.2	34
106	A Convenient Method for Preparing Alkyl-Functionalized Silicon Nanocubes. Journal of the American Chemical Society, 2012, 134, 13958-13961.	6.6	32
107	Size independent blue luminescence in nitrogen passivated silicon nanocrystals. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1844-1846.	0.8	21
108	Photothermal Response of Photoluminescent Silicon Nanocrystals. Journal of Physical Chemistry Letters, 2012, 3, 1793-1797.	2.1	32

#	Article	IF	Citations
109	From Si and C encapsulated SiO2 to SiC: exploring the influence of sol–gel polymer substitution on thermally induced nanocrystal formation. Journal of Materials Chemistry, 2011, 21, 12422.	6.7	13
110	Size-controlled template synthesis of metal-free germanium nanowires. Journal of Materials Chemistry, 2011, 21, 16505.	6.7	18
111	Synthesis of Si _{<i>x</i>} Ge _{1–<i>x</i>} Nanocrystals Using Hydrogen Silsesquioxane and Soluble Germanium Diiodide Complexes. Chemistry of Materials, 2011, 23, 5096-5103.	3.2	23
112	Realization of sensitized erbium luminescence in Si–nanocrystal composites obtained from solution processable sol–gel derived materials. Journal of Materials Chemistry, 2011, 21, 1713-1720.	6.7	5
113	Size-Dependent Reactivity in Hydrosilylation of Silicon Nanocrystals. Journal of the American Chemical Society, 2011, 133, 9564-9571.	6.6	77
114	Non-lithographic Patterning of Oxide-Embedded Silicon Nanoparticles. Materials Research Society Symposia Proceedings, 2011, 1359, 187.	0.1	0
115	Sol–gel precursors for group 14 nanocrystals. Chemical Communications, 2010, 46, 8704.	2.2	57
116	How Processing Atmosphere Influences the Evolution of GeO ₂ -Embedded Germanium Nanocrystals Obtained from the Thermolysis of Phenyl Trichlorogermane-Derived Polymers. Chemistry of Materials, 2010, 22, 2653-2661.	3.2	19
117	Exploration of Organic Acid Chain Length on Water-Soluble Silicon Quantum Dot Surfaces. Langmuir, 2010, 26, 15657-15664.	1.6	77
118	X-ray Absorption Spectroscopy of Functionalized Silicon Nanocrystals. Journal of Physical Chemistry C, 2010, 114, 22519-22525.	1.5	14
119	An Investigation into Near-UV Hydrosilylation of Freestanding Silicon Nanocrystals. ACS Nano, 2010, 4, 4645-4656.	7.3	112
120	Stabilizing the optical properties of PFO through addition of a non-volatile low molecular weight aromatic ether. Journal of Materials Chemistry, 2010, 20, 8147.	6.7	16
121	Influence of HSiO _{1.5} Solâ^Gel Polymer Structure and Composition on the Size and Luminescent Properties of Silicon Nanocrystals. Chemistry of Materials, 2009, 21, 5426-5434.	3.2	106
122	Synthesis and Photoluminescent Properties of Size-Controlled Germanium Nanocrystals from Phenyl Trichlorogermane-Derived Polymers. Journal of the American Chemical Society, 2008, 130, 3624-3632.	6.6	87
123			

#	Article	IF	CITATIONS
127	An Investigation of the Formation and Growth of Oxide-Embedded Silicon Nanocrystals in Hydrogen Silsesquioxane-Derived Nanocomposites. Journal of Physical Chemistry C, 2007, 111, 6956-6961.	1.5	101
128	Synthesis, surface functionalization, and properties of freestanding silicon nanocrystals. Chemical Communications, 2006, , 4160.	2.2	245
129	Hydrogen Silsesquioxane:  A Molecular Precursor for Nanocrystalline Siâ^'SiO2 Composites and Freestanding Hydride-Surface-Terminated Silicon Nanoparticles. Chemistry of Materials, 2006, 18, 6139-6146.	3.2	362
130	Toward the Ideal Organic Light-Emitting Diode. The Versatility and Utility of Interfacial Tailoring by Cross-Linked Siloxane Interlayers. Accounts of Chemical Research, 2005, 38, 632-643.	7.6	238
131	Preparation of alkyl-surface functionalized germanium quantum dots via thermally initiated hydrogermylationElectronic supplementary information (ESI) available: FT-IR spectra of the hydride terminated reaction intermediate and n-undecyl surface Ge nanoclusters. See http://www.rsc.org/suppdata/cc/b3/b314887d/. Chemical Communications. 2004 386.	2.2	48