
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12024475/publications.pdf Version: 2024-02-01

PHILIP C MONC

#	Article	IF	CITATIONS
1	Presenilin Is Essential for ApoE Secretion, a Novel Role of Presenilin Involved in Alzheimer's Disease Pathogenesis. Journal of Neuroscience, 2022, 42, 1574-1586.	1.7	8
2	Loss of TDP-43 function and rimmed vacuoles persist after T cell depletion in a xenograft model of sporadic inclusion body myositis. Science Translational Medicine, 2022, 14, eabi9196.	5.8	27
3	Human brain sialoglycan ligand for CD33, a microglial inhibitory Siglec implicated in Alzheimer's disease. Journal of Biological Chemistry, 2022, 298, 101960.	1.6	13
4	Aberrant neural activity in prefrontal pyramidal neurons lacking TDP-43 precedes neuron loss. Progress in Neurobiology, 2022, 215, 102297.	2.8	3
5	D-Glucose uptake and clearance in the tauopathy Alzheimer's disease mouse brain detected by on-resonance variable delay multiple pulse MRI. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 1013-1025.	2.4	27
6	Hemizygous deletion of Tbk1 worsens neuromuscular junction pathology in TDP-43 transgenic mice. Experimental Neurology, 2021, 335, 113496.	2.0	15
7	Brain metabolism in tau and amyloid mouse models of Alzheimer's disease: An MRI study. NMR in Biomedicine, 2021, 34, e4568.	1.6	11
8	Early detection of Alzheimer's disease using creatine chemical exchange saturation transfer magnetic resonance imaging. Neurolmage, 2021, 236, 118071.	2.1	20
9	Loss of TDP-43 in male germ cells causes meiotic failure and impairs fertility in mice. Journal of Biological Chemistry, 2021, 297, 101231.	1.6	8
10	Upregulation of ATG7 attenuates motor neuron dysfunction associated with depletion of TARDBP/TDP-43. Autophagy, 2020, 16, 672-682.	4.3	24
11	Splicing repression is a major function of TDP-43 in motor neurons. Acta Neuropathologica, 2019, 138, 813-826.	3.9	60
12	Longitudinal diffusion tensor magnetic resonance imaging analysis at the cohort level reveals disturbed cortical and callosal microstructure with spared corticospinal tract in the TDP-43G298S ALS mouse model. Translational Neurodegeneration, 2019, 8, 27.	3.6	13
13	Protein aggregation linked to Alzheimer's disease revealed by saturation transfer MRI. NeuroImage, 2019, 188, 380-390.	2.1	50
14	Reversible induction of TDP-43 granules in cortical neurons after traumatic injury. Experimental Neurology, 2018, 299, 15-25.	2.0	41
15	Tdp-43 cryptic exons are highly variable between cell types. Molecular Neurodegeneration, 2017, 12, 13.	4.4	63
16	Cryptic exon incorporation occurs in Alzheimer's brain lacking TDP-43 inclusion but exhibiting nuclear clearance of TDP-43. Acta Neuropathologica, 2017, 133, 923-931.	3.9	58
17	An LHX1-Regulated Transcriptional Network Controls Sleep/Wake Coupling and Thermal Resistance of the Central Circadian Clockworks. Current Biology, 2017, 27, 128-136.	1.8	36
18	Challenges and Advances in Gene Therapy Approaches for Neurodegenerative Disorders. Current Gene Therapy, 2017, 17, 187-193.	0.9	9

#	Article	IF	CITATIONS
19	O5-03-04: G-Secretase Modulator Enhances the Ab-Lowering Effect of Bace1 Inhibitor in Mouse Models of Alzheimer's Disease. , 2016, 12, P383-P384.		0
20	PTBP1 and PTBP2 Repress Nonconserved Cryptic Exons. Cell Reports, 2016, 17, 104-113.	2.9	53
21	Motor neuron disease, TDP-43 pathology, and memory deficits in mice expressing ALS–FTD-linked <i>UBQLN2</i> mutations. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7580-E7589.	3.3	77
22	Depletion of TDP-43 decreases fibril and plaque β-amyloid and exacerbates neurodegeneration in an Alzheimer's mouse model. Acta Neuropathologica, 2016, 132, 859-873.	3.9	43
23	The neuritic plaque facilitates pathological conversion of tau in an Alzheimer's disease mouse model. Nature Communications, 2016, 7, 12082.	5.8	56
24	Serotonin 2B receptor slows disease progression and prevents degeneration of spinal cord mononuclear phagocytes in amyotrophic lateral sclerosis. Acta Neuropathologica, 2016, 131, 465-480.	3.9	41
25	TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD. Science, 2015, 349, 650-655.	6.0	419
26	Intraventricular Delivery of siRNA Nanoparticles to the Central Nervous System. Molecular Therapy - Nucleic Acids, 2015, 4, e242.	2.3	43
27	Low dietary protein content alleviates motor symptoms in mice with mutant dynactin/dynein-mediated neurodegeneration. Human Molecular Genetics, 2015, 24, 2228-2240.	1.4	22
28	Defective Age-Dependent Metaplasticity in a Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2015, 35, 11346-11357.	1.7	54
29	GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature, 2015, 525, 129-133.	13.7	692
30	Alzheimer Disease. , 2015, , 321-338.		9
31	Postsynaptic Target Specific Synaptic Dysfunctions in the CA3 Area of BACE1 Knockout Mice. PLoS ONE, 2014, 9, e92279.	1.1	25
32	Function, therapeutic potential and cell biology of <scp>BACE</scp> proteases: current status and future prospects. Journal of Neurochemistry, 2014, 130, 4-28.	2.1	269
33	Treatment with bexarotene, a compound that increases apolipoprotein-E, provides no cognitive benefit in mutant APP/PS1 mice. Molecular Neurodegeneration, 2013, 8, 18.	4.4	75
34	Altered astrocytic expression of TDP-43 does not influence motor neuron survival. Experimental Neurology, 2013, 250, 250-259.	2.0	49
35	The dynactin p150 subunit: cell biology studies of sequence changes found in ALS/MND and Parkinsonian Syndromes. Journal of Neural Transmission, 2013, 120, 785-798.	1.4	35

36 Motor Neuron Diseases. , 2012, , 801-814.

#	Article	IF	CITATIONS
37	Neurobiology of Alzheimer's Disease. , 2012, , 815-828.		3
38	Specific domains in anterior pharynx-defective 1 determine its intramembrane interactions with nicastrin and presenilin. Neurobiology of Aging, 2012, 33, 277-285.	1.5	7
39	Rodent models of TDP-43: Recent advances. Brain Research, 2012, 1462, 26-39.	1.1	99
40	Selectivity to amyloid-β precursor protein cleavage provides hope against Alzheimer's. Alzheimer's Research and Therapy, 2011, 3, 7.	3.0	2
41	Amyloid Precursor Protein Processing and Alzheimer's Disease. Annual Review of Neuroscience, 2011, 34, 185-204.	5.0	1,455
42	Arc/Arg3.1 Regulates an Endosomal Pathway Essential for Activity-Dependent β-Amyloid Generation. Cell, 2011, 147, 615-628.	13.5	183
43	Reduced BACE1 Activity Enhances Clearance of Myelin Debris and Regeneration of Axons in the Injured Peripheral Nervous System. Journal of Neuroscience, 2011, 31, 5744-5754.	1.7	76
44	Increased Expression of PS1 Is Sufficient to Elevate the Level and Activity of Î ³ -Secretase In Vivo. PLoS ONE, 2011, 6, e28179.	1.1	24
45	An Overview of APP Processing Enzymes and Products. NeuroMolecular Medicine, 2010, 12, 1-12.	1.8	515
46	Deletion of <i>TDP-43</i> down-regulates <i>Tbc1d1</i> , a gene linked to obesity, and alters body fat metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16320-16324.	3.3	255
47	Mossy Fiber Long-Term Potentiation Deficits in BACE1 Knock-Outs Can Be Rescued by Activation of α7 Nicotinic Acetylcholine Receptors. Journal of Neuroscience, 2010, 30, 13808-13813.	1.7	26
48	Modeling an Anti-Amyloid Combination Therapy for Alzheimer's Disease. Science Translational Medicine, 2010, 2, 13ra1.	5.8	42
49	Altered distributions of Gemini of coiled bodies and mitochondria in motor neurons of <i>TDP-43</i> transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16325-16330.	3.3	283
50	S-Palmitoylation of γ-Secretase Subunits Nicastrin and APH-1. Journal of Biological Chemistry, 2009, 284, 1373-1384.	1.6	61
51	Alzheimer Disease AÎ ² Production in the Absence of S-Palmitoylation-dependent Targeting of BACE1 to Lipid Rafts. Journal of Biological Chemistry, 2009, 284, 3793-3803.	1.6	137
52	Single Chain Variable Fragment against Nicastrin Inhibits the Î ³ -Secretase Activity. Journal of Biological Chemistry, 2009, 284, 27838-27847.	1.6	19
53	APH1 Polar Transmembrane Residues Regulate the Assembly and Activity of Presenilin Complexes. Journal of Biological Chemistry, 2009, 284, 16298-16307.	1.6	30
54	The β-Secretase Enzyme BACE in Health and Alzheimer's Disease: Regulation, Cell Biology, Function, and Therapeutic Potential. Journal of Neuroscience, 2009, 29, 12787-12794.	1.7	498

#	Article	IF	CITATIONS
55	Progressive behavioral deficits in DJ-1-deficient mice are associated with normal nigrostriatal function. Neurobiology of Disease, 2008, 29, 505-514.	2.1	89
56	Translational Control of BACE1 May Go Awry in Alzheimer's Disease. Neuron, 2008, 60, 941-943.	3.8	12
57	Glu332 in the Nicastrin Ectodomain Is Essential for Î ³ -Secretase Complex Maturation but Not for Its Activity. Journal of Biological Chemistry, 2008, 283, 20096-20105.	1.6	97
58	BACE1 Knock-Outs Display Deficits in Activity-Dependent Potentiation of Synaptic Transmission at Mossy Fiber to CA3 Synapses in the Hippocampus. Journal of Neuroscience, 2008, 28, 8677-8681.	1.7	98
59	Motor Neuron Disease Occurring in a Mutant Dynactin Mouse Model Is Characterized by Defects in Vesicular Trafficking. Journal of Neuroscience, 2008, 28, 1997-2005.	1.7	166
60	Messenger RNA Oxidation Occurs Early in Disease Pathogenesis and Promotes Motor Neuron Degeneration in ALS. PLoS ONE, 2008, 3, e2849.	1.1	178
61	Alzheimer's Betaâ \in 6ecretase in Health and Disease. FASEB Journal, 2008, 22, 119.2.	0.2	Ο
62	Epidermal Growth Factor Receptor and Notch Pathways Participate in the Tumor Suppressor Function of Î ³ -Secretase. Journal of Biological Chemistry, 2007, 282, 32264-32273.	1.6	82
63	Moderate Reduction of γ-Secretase Attenuates Amyloid Burden and Limits Mechanism-Based Liabilities. Journal of Neuroscience, 2007, 27, 10849-10859.	1.7	78
64	BACE1 inhibition reduces endogenous Abeta and alters APP processing in wild-type mice. Journal of Neurochemistry, 2006, 99, 1555-1563.	2.1	101
65	Amyotrophic Lateral Sclerosis 2-Deficiency Leads to Neuronal Degeneration in Amyotrophic Lateral Sclerosis through Altered AMPA Receptor Trafficking. Journal of Neuroscience, 2006, 26, 11798-11806.	1.7	79
66	Alzheimer Disease: Therapeutic Targets for Clinical Trials. Retina, 2005, 25, S80-S81.	1.0	1
67	Selected genetically engineered models relevant to human neurodegenerative disease. , 2005, , 176-195.		1
68	Alzheimer's Disease: Clinical Features, Neuropathologies and Biochemical Abnormalities, Genetics, Models, and Experimental Therapeutics. , 2005, , 445-458.		3
69	Axonal Transport, Amyloid Precursor Protein, Kinesin-1, and the Processing Apparatus: Revisited. Journal of Neuroscience, 2005, 25, 2386-2395.	1.7	221
70	Loss of ALS2 Function Is Insufficient to Trigger Motor Neuron Degeneration in Knock-Out Mice But Predisposes Neurons to Oxidative Stress. Journal of Neuroscience, 2005, 25, 7567-7574.	1.7	104
71	APH-1a Is the Principal Mammalian APH-1 Isoform Present in Â-Secretase Complexes during Embryonic Development. Journal of Neuroscience, 2005, 25, 192-198.	1.7	105
72	BACE1, a Major Determinant of Selective Vulnerability of the Brain to Amyloid-Â Amyloidogenesis, is Essential for Cognitive, Emotional, and Synaptic Functions. Journal of Neuroscience, 2005, 25, 11693-11709.	1.7	490

#	Article	IF	CITATIONS
73	Nicastrin Is Critical for Stability and Trafficking but Not Association of Other Presenilin/γ-Secretase Components. Journal of Biological Chemistry, 2005, 280, 17020-17026.	1.6	105
74	Role of Alzheimer's disease models in designing and testing experimental therapeutics. Drug Discovery Today: Disease Models, 2005, 2, 305-312.	1.2	1
75	Association of γ-Secretase with Lipid Rafts in Post-Golgi and Endosome Membranes. Journal of Biological Chemistry, 2004, 279, 44945-44954.	1.6	372
76	Binding Sites of Â-Secretase Inhibitors in Rodent Brain: Distribution, Postnatal Development, and Effect of Deafferentation. Journal of Neuroscience, 2004, 24, 2942-2952.	1.7	42
77	Toxicity of Familial ALS-Linked SOD1 Mutants from Selective Recruitment to Spinal Mitochondria. Neuron, 2004, 43, 5-17.	3.8	497
78	Early events of target deprivation/axotomyâ€induced neuronal apoptosis <i>in vivo</i> : oxidative stress, DNA damage, p53 phosphorylation and subcellular redistribution of death proteins. Journal of Neurochemistry, 2003, 85, 234-247.	2.1	71
79	Nicastrin Is Required for Assembly of Presenilin/γ-Secretase Complexes to Mediate Notch Signaling and for Processing and Trafficking of β-Amyloid Precursor Protein in Mammals. Journal of Neuroscience, 2003, 23, 3272-3277.	1.7	174
80	Genetically engineered models of neurodegenerative diseases. , 2002, , 1841-1862.		1
81	Genetically engineered mouse models of neurodegenerative diseases. Nature Neuroscience, 2002, 5, 633-639.	7.1	219
82	Reply to 'Is ALS caused by an altered oxidative activity of mutant superoxide dismutase?'. Nature Neuroscience, 2002, 5, 919-920.	7.1	12
83	Mutant SOD1 causes motor neuron disease independent of copper chaperone–mediated copper loading. Nature Neuroscience, 2002, 5, 301-307.	7.1	253
84	Histological Evidence of Protein Aggregation in Mutant SOD1 Transgenic Mice and in Amyotrophic Lateral Sclerosis Neural Tissues. Neurobiology of Disease, 2001, 8, 933-941.	2.1	374
85	Genetically Engineered Models Relevant to Neurodegenerative Disorders: Their Value for Understanding Disease Mechanisms and Designing/Testing Experimental Therapeutics. Journal of Molecular Neuroscience, 2001, 17, 233-257.	1.1	14
86	BACE1 is the major β-secretase for generation of Aβ peptides by neurons. Nature Neuroscience, 2001, 4, 233-234.	7.1	1,023
87	The Brain's Susceptibility to Amyloid Plaques. Science, 2001, 293, 1434b-1434.	6.0	15
88	The Value of Transgenic Models for the Study of Neurodegenerative Diseases. Annals of the New York Academy of Sciences, 2000, 920, 179-191.	1.8	51
89	Alzheimer%#x2019;s Disease and Genetically Engineered Animal Models. , 1999, , 187-214.		Ο
90	Transgenic Mouse Models of Alzheimer's Disease and Amyotrophic Lateral Sclerosis. Brain Pathology, 1998, 8, 735-757.	2.1	27

PHILIP C WONG

#	Article	IF	CITATIONS
91	The genetic and molecular mechanisms of motor neuron disease. Current Opinion in Neurobiology, 1998, 8, 791-799.	2.0	68
92	Effects of PS1 Deficiency on Membrane Protein Trafficking in Neurons. Neuron, 1998, 21, 1213-1221.	3.8	359
93	An Alzheimer's Disease-Linked PS1 Variant Rescues the Developmental Abnormalities of PS1-Deficient Embryos. Neuron, 1998, 20, 603-609.	3.8	134
94	Axonal Transport of Mutant Superoxide Dismutase 1 and Focal Axonal Abnormalities in the Proximal Axons of Transgenic Mice. Neurobiology of Disease, 1998, 5, 27-35.	2.1	96
95	Protective effect of neurofilament heavy gene overexpression in motor neuron disease induced by mutant superoxide dismutase. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9626-9630.	3.3	193
96	Familial Amyotrophic Lateral Sclerosis and Alzheimer's Disease. Advances in Experimental Medicine and Biology, 1998, , 145-159.	0.8	7
97	Transgenic Models of Amyotrophic Lateral Sclerosis and Alzheimer's Disease. , 1998, , 107-123.		0
98	Presenilin 1 is required for Notch 1 and Dll1 expression in the paraxial mesoderm. Nature, 1997, 387, 288-292.	13.7	730
99	Perspectives on the Mechanisms of Familial Amyotrophic Lateral Sclerosis Caused by Mutations in Superoxide Dismutase 1. , 1997, , 295-314.		0
100	Transgenic models of neurodegenerative diseases. Current Opinion in Neurobiology, 1996, 6, 651-660.	2.0	30
101	Transgenic and gene-targeting approaches to model disorders of motor neurons. Seminars in Neuroscience, 1996, 8, 163-169.	2.3	2
102	Inherited Neurodegenerative Diseases and Transgenic Models. Brain Pathology, 1996, 6, 467-480.	2.1	9
103	Motor neuron disease caused by mutations in superoxide dismutase 1. Current Opinion in Neurology, 1995, 8, 294-302.	1.8	34
104	Superoxide Dismutase 1 Subunits with Mutations Linked to Familial Amyotrophic Lateral Sclerosis Do Not Affect Wild-type Subunit Function. Journal of Biological Chemistry, 1995, 270, 3234-3238.	1.6	142
105	An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron, 1995, 14, 1105-1116.	3.8	1,394
106	Alzheimer's disease, model systems and experimental therapeutics. , 0, , 565-586.		0
107	β-secretase: Physiological Role and Target Validation. , 0, , 59-76.		0