Ml Blazquez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12024262/publications.pdf

Version: 2024-02-01

218677 302126 3,192 40 26 39 h-index citations g-index papers 40 40 40 3122 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Comparative study of biosorption of heavy metals using different types of algae. Bioresource Technology, 2007, 98, 3344-3353.	9.6	497
2	Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus. Journal of Hazardous Materials, 2009, 166, 612-618.	12.4	304
3	Leaching of chalcopyrite with ferric ion. Part I: General aspects. Hydrometallurgy, 2008, 93, 81-87.	4.3	288
4	Biosorption of heavy metals by activated sludge and their desorption characteristics. Journal of Environmental Management, 2007, 84, 419-426.	7.8	203
5	Leaching of chalcopyrite with ferric ion. Part II: Effect of redox potential. Hydrometallurgy, 2008, 93, 88-96.	4.3	187
6	Sugar-beet pulp pectin gels as biosorbent for heavy metals: Preparation and determination of biosorption and desorption characteristics. Chemical Engineering Journal, 2009, 150, 289-301.	12.7	171
7	Biosorption of cadmium, lead and copper with calcium alginate xerogels and immobilized Fucus vesiculosus. Journal of Hazardous Materials, 2009, 163, 555-562.	12.4	163
8	Characterization of the biosorption of cadmium, lead and copper with the brown alga Fucus vesiculosus. Journal of Hazardous Materials, 2008, 158, 316-323.	12.4	143
9	Bioremediation of an industrial acid mine water by metal-tolerant sulphate-reducing bacteria. Minerals Engineering, 2001, 14, 997-1008.	4.3	105
10	Characterization of brushite as a re-crystallization product formed during bacterial solubilization of hydroxyapatite in batch cultures. Soil Biology and Biochemistry, 2006, 38, 2645-2654.	8.8	94
11	Leaching of chalcopyrite with ferric ion. Part IV: The role of redox potential in the presence of mesophilic and thermophilic bacteria. Hydrometallurgy, 2008, 93, 106-115.	4.3	88
12	Mobilization of phosphorus from iron ore by the bacterium Burkholderia caribensis FeGL03. Minerals Engineering, 2009, 22, 1-9.	4.3	74
13	Study of cadmium, zinc and lead biosorption by orange wastes using the subsequent addition method. Bioresource Technology, 2008, 99, 8101-8106.	9.6	73
14	Studies on sorption, desorption, regeneration and reuse of sugar-beet pectin gels for heavy metal removal. Journal of Hazardous Materials, 2010, 178, 243-248.	12.4	71
15	Silver-catalysed bioleaching of a chalcopyrite concentrate with mixed cultures of moderately thermophilic microorganisms. Hydrometallurgy, 1999, 51, 37-46.	4.3	69
16	A study of the bioleaching of a Spanish uranium ore. Part I: A review of the bacterial leaching in the treatment of uranium ores. Hydrometallurgy, 1995, 38, 39-57.	4.3	65
17	Electrochemistry of chalcopyrite. Hydrometallurgy, 1996, 43, 331-344.	4. 3	63
18	Simultaneous uptake of metals by activated sludge. Minerals Engineering, 2003, 16, 723-729.	4.3	53

#	Article	IF	CITATIONS
19	Biosorption of heavy metals by chemically-activated algaFucus vesiculosus. Journal of Chemical Technology and Biotechnology, 2005, 80, 1403-1407.	3.2	53
20	Bioleaching of a chalcopyrite concentrate with moderate thermophilic microorganisms in a continuous reactor system. Hydrometallurgy, 2007, 87, 100-111.	4.3	50
21	The use of catalytic ions in bioleaching. Hydrometallurgy, 1992, 29, 145-160.	4.3	46
22	The influence of various ions in the bioleaching of metal sulphides. Hydrometallurgy, 1990, 23, 221-235.	4.3	39
23	Sorption and desorption of Cd, Cu and Pb using biomass from an eutrophized habitat in monometallic and bimetallic systems. Journal of Environmental Management, 2011, 92, 2666-2674.	7.8	38
24	Leaching capacity of a new extremely thermophilic microorganism, Sulfolobus rivotincti. Hydrometallurgy, 1999, 52, 349-366.	4.3	33
25	The influence of composition and grain size on the martensitic transformation temperatures of Cuî—'Alî—'Mn shape memory alloys. Scripta Metallurgica, 1987, 21, 1711-1716.	1.2	31
26	Optimization of the continuous biosorption of copper with sugar-beet pectin gels. Journal of Environmental Management, 2009, 90, 1737-1743.	7.8	30
27	The catalytic effect of some cations on the biological leaching of a Spanish complex sulphide. Hydrometallurgy, 1993, 34, 151-169.	4.3	26
28	Pyrite behaviour in a tailings pond. Hydrometallurgy, 2005, 76, 25-36.	4.3	26
29	Reactivity of a molybdenite concentrate against chemical or bacterial attack. Minerals Engineering, 2001, 14, 987-996.	4.3	21
30	Influence of metallic ions in the bioleaching of chalcopyrite by Sulfolobus BC: Experiments using pneumatically stirred reactors and massive samples. Minerals Engineering, 1995, 8, 949-965.	4.3	19
31	SEM and AES studies of chalcopyrite bioleaching in the presence of catalytic ions. Minerals Engineering, 1997, 10, 825-835.	4.3	13
32	Influence of the composition and maximum cycling temperature on the microstructure of Cu-Al-Mn shape memory alloys. Metallography, 1989, 23, 119-133.	0.4	10
33	Chemical and microbiological transformations in a pyritic tailing pond. Minerals Engineering, 1996, 9, 1127-1142.	4.3	10
34	SEM and AES studies of a lead sulphide bioleaching in presence of catalytic ions. Minerals Engineering, 1995, 8, 1503-1512.	4.3	9
35	Influence of various factors in the bioleaching of a bulk concentrate with mesophilic microorganisms in the presence of Ag(I). Hydrometallurgy, 1997, 45, 271-287.	4.3	9
36	Bioleaching behaviour of chalcopyrite in the presence of silver at $35 \hat{A}^{\circ}$ and $68 \hat{A}^{\circ}$ C. Process Metallurgy, 1999, , 137-147.	0.1	6

#	Article	IF	CITATIONS
37	Factors affecting the transformation of a pyritic tailing: scaled-up column tests. Journal of Hazardous Materials, 2005, 118, 35-43.	12.4	5
38	Inhibition of acid rock drainage from uranium ore waste using a conventional neutralization and precipitation treatment. Minerals Engineering, 2002, 15, 1141-1150.	4.3	4
39	Studies of zinc sulphide, treated with different solutions of catalyst ions. Vacuum, 1989, 39, 663-664.	3.5	3
40	Influence of bacteria and sulphite ions on the transformation of pyritic tailings: shake flask tests. Process Metallurgy, 1999, , 537-545.	0.1	0