
Carla A Orge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1202422/publications.pdf Version: 2024-02-01

CADLA & ODCE

#	Article	IF	CITATIONS
1	Synthesis of monometallic macrostructured catalysts for bromate reduction in a continuous catalytic system. Environmental Technology (United Kingdom), 2023, 44, 3834-3849.	1.2	2
2	Nano- and macro-structured cerium oxide – Carbon nanotubes composites for the catalytic ozonation of organic pollutants in water. Catalysis Today, 2022, 384-386, 187-196.	2.2	7
3	O3 based advanced oxidation for ibuprofen degradation. Chinese Journal of Chemical Engineering, 2022, 42, 277-284.	1.7	7
4	Engineering of Nanostructured Carbon Catalyst Supports for the Continuous Reduction of Bromate in Drinking Water. Journal of Carbon Research, 2022, 8, 21.	1.4	3
5	Novel Heterogeneous Catalysts for Advanced Oxidation Processes (AOPs). Catalysts, 2022, 12, 498.	1.6	2
6	Influence of preparation methods on the activity of macro-structured ball-milled MWCNT catalysts in the ozonation of organic pollutants. Journal of Environmental Chemical Engineering, 2021, 9, 104578.	3.3	6
7	Influence of organic matter formed during oxidative processes in the catalytic reduction of nitrate. Journal of Environmental Chemical Engineering, 2021, 9, 105545.	3.3	10
8	Metal-zeolite catalysts for the removal of pharmaceutical pollutants in water by catalytic ozonation. Journal of Environmental Chemical Engineering, 2021, 9, 106458.	3.3	8
9	Bezafibrate removal by coupling ozonation and photocatalysis: effect of experimental conditions. Environmental Nanotechnology, Monitoring and Management, 2021, 17, 100610.	1.7	0
10	4-Nitrobenzaldehyde removal by catalytic ozonation in the presence of CNT. Journal of Water Process Engineering, 2020, 38, 101573.	2.6	13
11	Nitrate Catalytic Reduction over Bimetallic Catalysts: Catalyst Optimization. Journal of Carbon Research, 2020, 6, 78.	1.4	11
12	Nanostructured Layers of Mechanically Processed Multiwalled Carbon Nanotubes for Catalytic Ozonation of Organic Pollutants. ACS Applied Nano Materials, 2020, 3, 5271-5284.	2.4	16
13	Efficiency and stability of metal-free carbon nitride in the photocatalytic ozonation of oxamic acid under visible light. Journal of Environmental Chemical Engineering, 2020, 8, 104172.	3.3	7
14	Catalytic Advanced Oxidation Processes for Sulfamethoxazole Degradation. Applied Sciences (Switzerland), 2019, 9, 2652.	1.3	24
15	Magnetic Nanoparticles for Photocatalytic Ozonation of Organic Pollutants. Catalysts, 2019, 9, 703.	1.6	10
16	Sulfamethoxazole degradation by combination of advanced oxidation processes. Journal of Environmental Chemical Engineering, 2018, 6, 4054-4060.	3.3	41
17	Synthesis of TiO2-Carbon Nanotubes through ball-milling method for mineralization of oxamic acid (OMA) by photocatalytic ozonation. Journal of Environmental Chemical Engineering, 2017, 5, 5599-5607.	3.3	23
18	Photocatalytic ozonation of aniline with TiO2-carbon composite materials. Journal of Environmental Management, 2017, 195, 208-215.	3.8	41

CARLA A ORGE

#	Article	IF	CITATIONS
19	Photocatalytic-assisted ozone degradation of metolachlor aqueous solution. Chemical Engineering Journal, 2017, 318, 247-253.	6.6	37
20	Photocatalytic ozonation of model aqueous solutions of oxalic and oxamic acids. Applied Catalysis B: Environmental, 2015, 174-175, 113-119.	10.8	25
21	Fast mineralization and detoxification of amoxicillin and diclofenac by photocatalytic ozonation and application to an urban wastewater. Water Research, 2015, 87, 87-96.	5.3	153
22	Removal of oxalic acid, oxamic acid and aniline by a combined photolysis and ozonation process. Environmental Technology (United Kingdom), 2015, 36, 1075-1083.	1.2	22
23	Lanthanum-based perovskites as catalysts for the ozonation of selected organic compounds. Applied Catalysis B: Environmental, 2013, 140-141, 426-432.	10.8	27
24	Ceria and cerium-based mixed oxides as ozonation catalysts. Chemical Engineering Journal, 2012, 200-202, 499-505.	6.6	74
25	Carbon xerogels and ceria–carbon xerogel materials as catalysts in the ozonation of organic pollutants. Applied Catalysis B: Environmental, 2012, 126, 22-28.	10.8	33
26	Composites of manganese oxide with carbon materials as catalysts for the ozonation of oxalic acid. Journal of Hazardous Materials, 2012, 213-214, 133-139.	6.5	30
27	Adsorption of dyes on carbon xerogels and templated carbons: influence of surface chemistry. Adsorption, 2011, 17, 431-441.	1.4	50
28	Ozonation of model organic compounds catalysed by nanostructured cerium oxides. Applied Catalysis B: Environmental, 2011, 103, 190-199.	10.8	116
29	Catalytic ozonation of organic pollutants in the presence of cerium oxide–carbon composites. Applied Catalysis B: Environmental, 2011, 102, 539-546.	10.8	65
30	Development of Novel Mesoporous Carbon Materials for the Catalytic Ozonation of Organic Pollutants. Catalysis Letters, 2009, 132, 1-9.	1.4	28