
Masoud H Manjili

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1202387/publications.pdf Version: 2024-02-01

ΜΑΘΟΙΙΟ Η ΜΑΝΙΙΙΙ

#	Article	IF	CITATIONS
1	Multifaceted functions of chronic inflammation in regulating tumor dormancy and relapse. Seminars in Cancer Biology, 2022, 78, 17-22.	4.3	19
2	Pattern recognition of tumor dormancy and relapse beyond cell-intrinsic and cell-extrinsic pathways. Seminars in Cancer Biology, 2022, 78, 1-4.	4.3	8
3	Distinct hepatic immunological patterns are associated with the progression or inhibition of hepatocellular carcinoma. Cell Reports, 2022, 38, 110454.	2.9	19
4	Cancer immunotherapy: Identifying cancer testis antigen peptides to enhance antitumor response Journal of Clinical Oncology, 2022, 40, e20022-e20022.	0.8	0
5	Engineering T Cells to Express Tumoricidal MDA-7/IL24 Enhances Cancer Immunotherapy. Cancer Research, 2021, 81, 2429-2441.	0.4	5
6	Longitudinal studies can identify distinct inflammatory cytokines associated with the inhibition or progression of liver cancer. Liver International, 2020, 40, 468-472.	1.9	13
7	Local and distant tumor dormancy during early stage breast cancer are associated with the predominance of infiltrating T effector subsets. Breast Cancer Research, 2020, 22, 116.	2.2	11
8	COVID-19 as an Acute Inflammatory Disease. Journal of Immunology, 2020, 205, 12-19.	0.4	133
9	The premise of personalized immunotherapy for cancer dormancy. Oncogene, 2020, 39, 4323-4330.	2.6	17
10	The Roles of Autophagy and Senescence in the Tumor Cell Response to Radiation. Radiation Research, 2020, 194, 103.	0.7	51
11	Tumor Cell Dormancy: Threat or Opportunity in the Fight against Cancer. Cancers, 2019, 11, 1207.	1.7	75
12	The microbiome and breast cancer: a review. Breast Cancer Research and Treatment, 2019, 178, 493-496.	1.1	82
13	IFN-Î ³ orchestrates tumor elimination, tumor dormancy, tumor escape, and progression. Journal of Leukocyte Biology, 2018, 103, 1219-1223.	1.5	74
14	Human mast cells present antigen to autologous CD4+ T cells. Journal of Allergy and Clinical Immunology, 2018, 141, 311-321.e10.	1.5	52
15	Determining the Quantitative Principles of T Cell Response to Antigenic Disparity in Stem Cell Transplantation. Frontiers in Immunology, 2018, 9, 2284.	2.2	11
16	A Theoretical Basis for the Efficacy of Cancer Immunotherapy and Immunogenic Tumor Dormancy: The Adaptation Model of Immunity. Advances in Cancer Research, 2018, 137, 17-36.	1.9	12
17	Gr1 â^'/low CD11b â^'/low MHCII + myeloid cells boost T cell antiâ€ŧumor efficacy. Journal of Leukocyte Biology, 2018, 104, 1215-1228.	1.5	5
18	Autophagy-deficient breast cancer shows early tumor recurrence and escape from dormancy. Oncotarget, 2018, 9, 22113-22122.	0.8	45

#	Article	IF	CITATIONS
19	Tumor Dormancy and Relapse: From a Natural Byproduct of Evolution to a Disease State. Cancer Research, 2017, 77, 2564-2569.	0.4	87
20	Role of Epigenetic Modification and Immunomodulation in a Murine Prostate Cancer Model. Prostate, 2017, 77, 361-373.	1.2	4
21	Immunotherapy of cancer: targeting cancer during active disease or during dormancy?. Immunotherapy, 2017, 9, 943-949.	1.0	6
22	Conditioning neoadjuvant therapies for improved immunotherapy of cancer. Biochemical Pharmacology, 2017, 145, 12-17.	2.0	11
23	Low-Dose Mixture Hypothesis of Carcinogenesis Workshop: Scientific Underpinnings and Research Recommendations. Environmental Health Perspectives, 2017, 125, 163-169.	2.8	35
24	Coordinated Upregulation of Mitochondrial Biogenesis and Autophagy in Breast Cancer Cells: The Role of Dynamin Related Protein-1 and Implication for Breast Cancer Treatment. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-10.	1.9	31
25	Immune Regulatory Function of Tregs. Immunological Investigations, 2016, 45, 708-711.	1.0	1
26	Tumor-reactive immune cells protect against metastatic tumor and induce immunoediting of indolent but not quiescent tumor cells. Journal of Leukocyte Biology, 2016, 100, 625-635.	1.5	39
27	On the organization of human T-cell receptor loci: log-periodic distribution of T-cell receptor gene segments. Journal of the Royal Society Interface, 2016, 13, 20150911.	1.5	6
28	Role of Tregs in Cancer Dormancy or Recurrence. Immunological Investigations, 2016, 45, 759-766.	1.0	17
29	DNA methyltransferase inhibition increases efficacy of adoptive cellular immunotherapy of murine breast cancer. Cancer Immunology, Immunotherapy, 2016, 65, 1061-1073.	2.0	40
30	Dynamical System Modeling to Simulate Donor T Cell Response to Whole Exome Sequencing-Derived Recipient Peptides Demonstrates Different Alloreactivity Potential in HLA-Matched and -Mismatched Donor–Recipient Pairs. Biology of Blood and Marrow Transplantation, 2016, 22, 850-861.	2.0	29
31	Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead. Carcinogenesis, 2015, 36, S254-S296.	1.3	239
32	Dynamical System Modeling of Immune Reconstitution after Allogeneic Stem Cell Transplantation Identifies Patients at Risk for Adverse Outcomes. Biology of Blood and Marrow Transplantation, 2015, 21, 1237-1245.	2.0	28
33	Chemical compounds from anthropogenic environment and immune evasion mechanisms: potential interactions. Carcinogenesis, 2015, 36, S111-S127.	1.3	43
34	Prospects in cancer immunotherapy: treating advanced stage disease or preventing tumor recurrence?. Discovery Medicine, 2015, 19, 427-31.	0.5	3
35	Evolution of Our Understanding of Myeloid Regulatory Cells: From MDSCs to Mregs. Frontiers in Immunology, 2014, 5, 303.	2.2	25
36	The Inherent Premise of Immunotherapy for Cancer Dormancy. Cancer Research, 2014, 74, 6745-6749.	0.4	38

#	Article	IF	CITATIONS
37	Stem Cell Transplantation as a Dynamical System: Are Clinical Outcomes Deterministic?. Frontiers in Immunology, 2014, 5, 613.	2.2	25
38	In silico Derivation of HLA-Specific Alloreactivity Potential from Whole Exome Sequencing of Stem-Cell Transplant Donors and Recipients: Understanding the Quantitative Immunobiology of Allogeneic Transplantation. Frontiers in Immunology, 2014, 5, 529.	2.2	48
39	The adaptation model of immunity. Immunotherapy, 2014, 6, 59-70.	1.0	11
40	Adoptive cellular therapy of cancer: exploring innate and adaptive cellular crosstalk to improve anti-tumor efficacy. Future Oncology, 2014, 10, 1779-1794.	1.1	12
41	Whole exome sequencing to estimate alloreactivity potential between donors and recipients in stem cell transplantation. British Journal of Haematology, 2014, 166, 566-570.	1.2	47
42	Etiology of GVHD: Alloreactivity or Impaired Cellular Adaptation?. Immunological Investigations, 2014, 43, 851-857.	1.0	9
43	Therapeutic Cancer Vaccines. Advances in Cancer Research, 2013, 119, 421-475.	1.9	450
44	Peripheral blood mononuclear cells of patients with breast cancer can be reprogrammed to enhance anti-HER-2/neu reactivity and overcome myeloid-derived suppressor cells. Breast Cancer Research and Treatment, 2013, 142, 45-57.	1.1	20
45	Fractal Organization of the Human T Cell Repertoire in Health and after Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2013, 19, 366-377.	2.0	55
46	HLA-DR expression on myeloid cells is a potential prognostic factor in patients with high-risk neuroblastoma. Oncolmmunology, 2013, 2, e26616.	2.1	9
47	Multi-therapeutic potential of autoantibodies induced by immune complexes trapped on follicular dendritic cells. Human Vaccines and Immunotherapeutics, 2013, 9, 2434-2444.	1.4	0
48	Molecular signatures mostly associated with NK cells are predictive of relapse free survival in breast cancer patients. Journal of Translational Medicine, 2013, 11, 145.	1.8	82
49	IFN-γ Rα Is a Key Determinant of CD8+ T Cell-Mediated Tumor Elimination or Tumor Escape and Relapse in FVB Mouse. PLoS ONE, 2013, 8, e82544.	1.1	27
50	Whole Exome Sequencing To Estimate Alloreactivity Potential Between Donors and Recipients In Stem Cell Transplantation. Blood, 2013, 122, 150-150.	0.6	1
51	Tumor Escape and Progression under Immune Pressure. Clinical and Developmental Immunology, 2012, 2012, 1-2.	3.3	2
52	Cancer immunotherapy. Oncolmmunology, 2012, 1, 201-204.	2.1	8
53	Immunotherapy of Cancer: Reprogramming Tumor-Immune Crosstalk. Clinical and Developmental Immunology, 2012, 2012, 1-8.	3.3	8
54	Regulation of auto-antibody production by persisting auto-immune complexes on follicular dendritic cells. Annals of the Rheumatic Diseases, 2012, 71, A38.1-A38.	0.5	0

#	Article	IF	CITATIONS
55	Distinct Oligoclonal T Cells Are Associated With Graft Versus Host Disease After Stem-Cell Transplantation. Transplantation, 2012, 93, 949-957.	0.5	20
56	Cutting Edge: Mast Cells Critically Augment Myeloid-Derived Suppressor Cell Activity. Journal of Immunology, 2012, 189, 511-515.	0.4	81
57	Epigenetic induction of adaptive immune response in multiple myeloma: sequential azacitidine and lenalidomide generate cancer testis antigenâ€specific cellular immunity. British Journal of Haematology, 2012, 158, 700-711.	1.2	37
58	Adaptive Immune Responses Associated with Breast Cancer Relapse. Archivum Immunologiae Et Therapiae Experimentalis, 2012, 60, 345-350.	1.0	13
59	CD44+/CD24â^²/low cancer stem/progenitor cells are more abundant in triple-negative invasive breast carcinoma phenotype and are associated with poor outcome. Human Pathology, 2012, 43, 364-373.	1.1	227
60	Favorable Outcomes in Patients with High Donor-Derived T Cell Count after InÂVivo TÂCell–Depleted Reduced-Intensity Allogeneic Stem CellÂTransplantation. Biology of Blood and Marrow Transplantation, 2012, 18, 794-804.	2.0	14
61	Signatures of tumor–immune interactions as biomarkers for breast cancer prognosis. Future Oncology, 2012, 8, 703-711.	1.1	26
62	Phenotypic Plasticity of MDSC in Cancers. Immunological Investigations, 2012, 41, 711-721.	1.0	20
63	Suppression of antigen-specific CD4+ T cell activation by SRA/CD204 through reducing the immunostimulatory capability of antigen-presenting cell. Journal of Molecular Medicine, 2012, 90, 413-426.	1.7	26
64	A signature of immune function genes associated with recurrence-free survival in breast cancer patients. Breast Cancer Research and Treatment, 2012, 131, 871-880.	1.1	166
65	Fractal Organization of the Human T Cell Repertoire in Health and Following Stem Cell Transplantation. Blood, 2012, 120, 4193-4193.	0.6	2
66	Ex vivo Expansion of Tumor-reactive T Cells by Means of Bryostatin 1/Ionomycin and the Common Gamma Chain Cytokines Formulation. Journal of Visualized Experiments, 2011, , .	0.2	5
67	CD4+ T cells inhibit the neu-specific CD8+ T-cell exhaustion during the priming phase of immune responses against breast cancer. Breast Cancer Research and Treatment, 2011, 126, 385-394.	1.1	18
68	Adoptive cell therapy of prostate cancer using female mice-derived T cells that react with prostate antigens. Cancer Immunology, Immunotherapy, 2011, 60, 349-360.	2.0	7
69	An immunologic portrait of cancer. Journal of Translational Medicine, 2011, 9, 146.	1.8	83
70	Distinct signatures of the immune responses in low risk versus high risk neuroblastoma. Journal of Translational Medicine, 2011, 9, 170.	1.8	33
71	Tumor escape and progression of HER-2/neu negative breast cancer under immune pressure. Journal of Translational Medicine, 2011, 9, 35.	1.8	17
72	Revisiting cancer immunoediting by understanding cancer immune complexity. Journal of Pathology, 2011, 224, 5-9.	2.1	23

#	Article	IF	CITATIONS
73	Prostateâ€derived Ets transcription factor (PDEF) is a potential prognostic marker in patients with prostate cancer. Prostate, 2011, 71, 1178-1188.	1.2	30
74	Activated NKT Cells and NK Cells Render T Cells Resistant to Myeloid-Derived Suppressor Cells and Result in an Effective Adoptive Cellular Therapy against Breast Cancer in the FVBN202 Transgenic Mouse. Journal of Immunology, 2011, 187, 708-717.	0.4	39
75	Targeting the Immunoregulator SRA/CD204 Potentiates Specific Dendritic Cell Vaccine-Induced T-cell Response and Antitumor Immunity. Cancer Research, 2011, 71, 6611-6620.	0.4	49
76	Comment on "Cutting Edge: CD8+ T Cell Priming in the Absence of NK Cells Leads to Enhanced Memory Responses― Journal of Immunology, 2011, 186, 6071.1-6071.	0.4	2
77	The Role of Tyk2 in Regulation of Breast Cancer Growth. Journal of Interferon and Cytokine Research, 2011, 31, 671-677.	0.5	13
78	Favorable Outcomes in Patients with High Donor-Derived T Cell Count Following In Vivo T Cell Depleted Reduced Intensity Allogeneic Stem Cell Transplantation. Blood, 2011, 118, 3043-3043.	0.6	0
79	Adaptive Immunotherapy In Multiple Myeloma: Epigenetic Modification and Immunomodulation by Sequential Azacitidine and Lenalidomide to Generate Cancer Testis Antigen Specific Cellular Immune Response. Blood, 2011, 118, 2926-2926.	0.6	0
80	IL-7Â+ÂIL-15 are superior to IL-2 for the ex vivo expansion of 4T1 mammary carcinoma-specific T cells with greater efficacy against tumors in vivo. Breast Cancer Research and Treatment, 2010, 122, 359-369.	1.1	49
81	GM-CSF is one of the main breast tumor-derived soluble factors involved in the differentiation of CD11b-Gr1- bone marrow progenitor cells into myeloid-derived suppressor cells. Breast Cancer Research and Treatment, 2010, 123, 39-49.	1.1	179
82	Tumour secreted grp170 chaperones full-length protein substrates and induces an adaptive anti-tumour immune response in vivo. International Journal of Hyperthermia, 2010, 26, 366-375.	1.1	10
83	Radiofrequency thermal ablation of breast tumors combined with intralesional administration of IL-7 and IL-15 augments anti-tumor immune responses and inhibits tumor development and metastasis. Breast Cancer Research and Treatment, 2009, 114, 423-431.	1.1	56
84	Adoptive transfer of HER2/neu-specific T cells expanded with alternating gamma chain cytokines mediate tumor regression when combined with the depletion of myeloid-derived suppressor cells. Cancer Immunology, Immunotherapy, 2009, 58, 941-953.	2.0	51
85	Incubation of antigen-sensitized T lymphocytes activated with bryostatin 1Â+Âionomycin in IL-7Â+ÂlL-15 increases yield of cells capable of inducing regression of melanoma metastases compared to culture in IL-2. Cancer Immunology, Immunotherapy, 2009, 58, 1565-1576.	2.0	33
86	Immune-Induced Epithelial to Mesenchymal Transition <i>In vivo</i> Generates Breast Cancer Stem Cells. Cancer Research, 2009, 69, 2887-2895.	0.4	369
87	Gemcitabine directly inhibits myeloid derived suppressor cells in BALB/c mice bearing 4T1 mammary carcinoma and augments expansion of T cells from tumor-bearing mice. International Immunopharmacology, 2009, 9, 900-909.	1.7	307
88	Human T cells express CD25 and Foxp3 upon activation and exhibit effector/memory phenotypes without any regulatory/suppressor function. Journal of Translational Medicine, 2009, 7, 89.	1.8	130
89	Danger signals and nonself entity of tumor antigen are both required for eliciting effective immune responses against HER-2/neu positive mammary carcinoma: implications for vaccine design. Cancer Immunology, Immunotherapy, 2008, 57, 1391-1398.	2.0	23
90	Does HERâ€2/neu antigen loss in metastatic breast tumors occur under immune pressure?. International Journal of Cancer, 2008, 123, 1476-1477.	2.3	5

#	Article	IF	CITATIONS
91	Prostateâ€derived Ets transcription factor as a favorable prognostic marker in ovarian cancer patients. International Journal of Cancer, 2008, 123, 1376-1384.	2.3	26
92	Signatures Associated with Rejection or Recurrence in HER-2/ <i>neu</i> –Positive Mammary Tumors. Cancer Research, 2008, 68, 2436-2446.	0.4	39
93	Come forth 1E10 anti-idiotype vaccine: Delivering the promise to immunotherapy of small cell lung cancer. Cancer Biology and Therapy, 2007, 6, 151-152.	1.5	3
94	HER-2/neu antigen loss and relapse of mammary carcinoma are actively induced by T cell-mediated anti-tumor immune responses. European Journal of Immunology, 2007, 37, 675-685.	1.6	92
95	Tumor immunoediting and immunosculpting pathways to cancer progression. Seminars in Cancer Biology, 2007, 17, 275-287.	4.3	167
96	Immunoadjuvant chaperone, GRP170, induces â€~danger signals' upon interaction with dendritic cells. Immunology and Cell Biology, 2006, 84, 203-208.	1.0	24
97	Emergence of immune escape variant of mammary tumors that has distinct proteomic profile and a reduced ability to induce "danger signals― Breast Cancer Research and Treatment, 2006, 96, 233-241.	1.1	20
98	Heat shock proteins HSP70 and GP96: structural insights. Cancer Immunology, Immunotherapy, 2006, 55, 339-346.	2.0	21
99	Heat shock proteins as vaccine adjuvants in infections and cancer. Drug Discovery Today, 2006, 11, 534-540.	3.2	95
100	Chaperoning Function of Stress Protein grp170, a Member of the hsp70 Superfamily, Is Responsible for its Immunoadjuvant Activity. Cancer Research, 2006, 66, 1161-1168.	0.4	54
101	Heat Shock Proteins and Scavenger Receptors: Role in Adaptive Immune Responses. Immunological Investigations, 2005, 34, 325-342.	1.0	27
102	HSP110 induces "danger signals―upon interaction with antigen presenting cells and mouse mammary carcinoma. Immunobiology, 2005, 210, 295-303.	0.8	36
103	Cancer immunotherapy and heat-shock proteins: promises and challenges. Expert Opinion on Biological Therapy, 2004, 4, 363-373.	1.4	26
104	Development of cancer vaccines using autologous and recombinant high molecular weight stress proteins. Methods, 2004, 32, 13-20.	1.9	18
105	HSP110-HER2/ <i>neu</i> Chaperone Complex Vaccine Induces Protective Immunity Against Spontaneous Mammary Tumors in HER-2/ <i>neu</i> Transgenic Mice. Journal of Immunology, 2003, 171, 4054-4061.	0.4	107
106	Immunotherapy of cancer using heat shock proteins. Frontiers in Bioscience - Landmark, 2002, 7, d43.	3.0	45
107	Hsp110 over-expression increases the immunogenicity of the murine CT26 colon tumor. Cancer Immunology, Immunotherapy, 2002, 51, 311-319.	2.0	39
108	Development of a recombinant HSP110-HER-2/neu vaccine using the chaperoning properties of HSP110. Cancer Research, 2002, 62, 1737-42.	0.4	67