
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12023025/publications.pdf Version: 2024-02-01

MALAK KOTR

#	Article	IF	CITATIONS
1	Human Lymphoid and Myeloid Cell Development in NOD/LtSz- <i>scid IL2R</i> î³ <i>null</i> Mice Engrafted with Mobilized Human Hemopoietic Stem Cells. Journal of Immunology, 2005, 174, 6477-6489.	0.4	1,513
2	The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nature Genetics, 2004, 36, 1133-1137.	9.4	1,034
3	DNase Expression Allows the Pathogen Group A Streptococcus to Escape Killing in Neutrophil Extracellular Traps. Current Biology, 2006, 16, 396-400.	1.8	581
4	Intravenous Immunoglobulin Therapy for Streptococcal Toxic Shock Syndrome—A Comparative Observational Study. Clinical Infectious Diseases, 1999, 28, 800-807.	2.9	513
5	DNase Sda1 provides selection pressure for a switch to invasive group A streptococcal infection. Nature Medicine, 2007, 13, 981-985.	15.2	371
6	An immunogenetic and molecular basis for differences in outcomes of invasive group A streptococcal infections. Nature Medicine, 2002, 8, 1398-1404.	15.2	339
7	Genetic Relatedness and Superantigen Expression in Group A Streptococcus Serotype M1 Isolates from Patients with Severe and Nonsevere Invasive Diseases. Infection and Immunity, 2000, 68, 3523-3534.	1.0	252
8	Novel Branched Poly(Ethylenimine)â^'Cholesterol Water-Soluble Lipopolymers for Gene Delivery. Biomacromolecules, 2002, 3, 1197-1207.	2.6	236
9	Consensus nomenclature for the mammalian methionine adenosyltransferase genes and gene products. Trends in Genetics, 1997, 13, 51-52.	2.9	199
10	Amelioration of the physiologic and biochemical changes of acute pancreatitis using an anti-TNF-α polyclonal antibody. American Journal of Surgery, 1994, 167, 214-219.	0.9	177
11	Invasive M1T1 group A Streptococcus undergoes a phase-shift in vivo to prevent proteolytic degradation of multiple virulence factors by SpeB. Molecular Microbiology, 2003, 51, 123-134.	1.2	174
12	Host Genetic Variation Affects Resistance to Infection with a Highly Pathogenic H5N1 Influenza A Virus in Mice. Journal of Virology, 2009, 83, 10417-10426.	1.5	169
13	An immunogenetic and molecular basis for differences in outcomes of invasive group A streptococcal infections. Nature Medicine, 2002, 8, 1398-1404.	15.2	167
14	Rise and Persistence of Global M1T1 Clone of <i>Streptococcus pyogenes</i> . Emerging Infectious Diseases, 2008, 14, 1511-1517.	2.0	165
15	Inverse Relation between Disease Severity and Expression of the Streptococcal Cysteine Protease, SpeB, among Clonal M1T1 Isolates Recovered from Invasive Group A Streptococcal Infection Cases. Infection and Immunity, 2000, 68, 6362-6369.	1.0	150
16	Mutational analysis of the group A streptococcal operon encoding streptolysin S and its virulence role in invasive infection. Molecular Microbiology, 2005, 56, 681-695.	1.2	148
17	Trigger for group A streptococcal M1T1 invasive disease. FASEB Journal, 2006, 20, 1745-1747.	0.2	140
18	Anti-TNFα therapy improves survival and ameliorates the pathophysiologic sequelae in acute pancreatitis in the rat. American Journal of Surgery, 1996, 171, 274-280.	0.9	139

Μαίακ Κότβ

#	Article	IF	CITATIONS
19	Risk Factors in the Pathogenesis of Invasive Group A Streptococcal Infections: Role of Protective Humoral Immunity. Infection and Immunity, 1999, 67, 1871-1877.	1.0	127
20	Viable Group A Streptococci in Macrophages during Acute Soft Tissue Infection. PLoS Medicine, 2006, 3, e53.	3.9	126
21	Methionine adenosyltransferase: Structure and function. , 1993, 59, 125-143.		122
22	Host variation in cytokine responses to superantigens determine the severity of invasive group A streptococcal infection. European Journal of Immunology, 2000, 30, 3247-3255.	1.6	115
23	Evidence for Superantigen Involvement in Severe Group A Streptococcal Tissue Infections. Journal of Infectious Diseases, 2001, 184, 853-860.	1.9	112
24	Mosaic Prophages with Horizontally Acquired Genes Account for the Emergence and Diversification of the Globally Disseminated M1T1 Clone of Streptococcus pyogenes. Journal of Bacteriology, 2005, 187, 3311-3318.	1.0	109
25	HLA Class II Associations With Rheumatic Heart Disease Are More Evident and Consistent Among Clinically Homogeneous Patients. Circulation, 1999, 99, 2784-2790.	1.6	103
26	Varying Titers of Neutralizing Antibodies to Streptococcal Superantigens in Different Preparations of Normal Polyspecific Immunoglobulin G: Implications for Therapeutic Efficacy. Clinical Infectious Diseases, 1998, 26, 631-638.	2.9	93
27	Expression and Functional Interaction of the Catalytic and Regulatory Subunits of Human Methionine Adenosyltransferase in Mammalian Cells. Journal of Biological Chemistry, 1999, 274, 29720-29725.	1.6	90
28	Quantitative detection of T-cell activation markers by real-time PCR in renal transplant rejection and correlation with histopathologic evaluation1. Transplantation, 2002, 74, 701-707.	0.5	90
29	Bacterial Superantigens Promote Acute Nasopharyngeal Infection by Streptococcus pyogenes in a Human MHC Class II-Dependent Manner. PLoS Pathogens, 2014, 10, e1004155.	2.1	84
30	Reciprocal, Temporal Expression of SpeA and SpeB by Invasive M1T1 Group A Streptococcal Isolates In Vivo. Infection and Immunity, 2001, 69, 4988-4995.	1.0	83
31	Vascular Endothelial Growth Factor Gene Delivery for Revascularization in Transplanted Human Islets. Pharmaceutical Research, 2004, 21, 15-25.	1.7	72
32	Cloning, Expression, and Functional Characterization of the β Regulatory Subunit of Human Methionine Adenosyltransferase (MAT II). Journal of Biological Chemistry, 2000, 275, 2359-2366.	1.6	70
33	HLA Transgenic Mice Provide Evidence for a Direct and Dominant Role of HLA Class II Variation in Modulating the Severity of Streptococcal Sepsis. Journal of Immunology, 2007, 178, 3076-3083.	0.4	70
34	Post-proteomic identification of a novel phage-encoded streptodornase, Sda1, in invasive M1T1 Streptococcus pyogenes. Molecular Microbiology, 2004, 54, 184-197.	1.2	69
35	Quantitative Measurement of P- and E-Selectin Adhesion Molecules in Acute Pancreatitis. Annals of Surgery, 2000, 231, 213-222.	2.1	68
36	Cationic lipid and polymer-based gene delivery to human pancreatic islets. Molecular Therapy, 2003, 7, 89-100.	3.7	64

#	Article	IF	CITATIONS
37	Trypsin Stimulates Production of Cytokines from Peritoneal Macrophages In Vitro and In Vivo. Pancreas, 2000, 21, 41-51.	0.5	63
38	Dissection of the Molecular Basis for Hypervirulence of an In Vivo–Selected Phenotype of the Widely Disseminated M1T1 Strain of Group A <i>Streptococcus</i> Bacteria. Journal of Infectious Diseases, 2010, 201, 855-865.	1.9	63
39	Heat Shock Protein 90 Associates with Monarch-1 and Regulates Its Ability to Promote Degradation of NF-κB-Inducing Kinase. Journal of Immunology, 2007, 179, 6291-6296.	0.4	62
40	A Naturally Occurring Mutation in ropB Suppresses SpeB Expression and Reduces M1T1 Group A Streptococcal Systemic Virulence. PLoS ONE, 2008, 3, e4102.	1.1	60
41	Differential presentation of group A streptococcal superantigens by HLA class II DQ and DR alleles. European Journal of Immunology, 2002, 32, 2570-2577.	1.6	57
42	Regulation of the Human MAT2B Gene Encoding the Regulatory β Subunit of Methionine Adenosyltransferase, MAT II. Journal of Biological Chemistry, 2001, 276, 24918-24924.	1.6	51
43	M1 Protein-Dependent Intracellular Trafficking Promotes Persistence and Replication of <i>Streptococcus pyogenes</i> in Macrophages. Journal of Innate Immunity, 2010, 2, 534-545.	1.8	51
44	Opsonic Antibodies to the Surface M Protein of Group A Streptococci in Pooled Normal Immunoglobulins (IVIG): Potential Impact on the Clinical Efficacy of IVIG Therapy for Severe Invasive Group A Streptococcal Infections. Infection and Immunity, 1998, 66, 2279-2283.	1.0	51
45	Blocking Pulmonary ICAM-1 Expression Ameliorates Lung Injury in Established Diet-Induced Pancreatitis. Annals of Surgery, 2001, 233, 213-220.	2.1	49
46	Tracing the evolutionary history of the pandemic group A streptococcal M1T1 clone. FASEB Journal, 2012, 26, 4675-4684.	0.2	48
47	Selective Modulation of Superantigenâ€Induced Responses by Streptococcal Cysteine Protease. Journal of Infectious Diseases, 2003, 187, 398-407.	1.9	47
48	Chromosomal Localization and Catalytic Properties of the Recombinant α Subunit of Human Lymphocyte Methionine Adenosyltransferase. Journal of Biological Chemistry, 1995, 270, 21860-21868.	1.6	43
49	Soluble M1 protein of Streptococcus pyogenes triggers potent T cell activation. Cellular Microbiology, 2007, 10, 070928215112001-???.	1.1	43
50	Microevolution of Group A Streptococci In Vivo: Capturing Regulatory Networks Engaged in Sociomicrobiology, Niche Adaptation, and Hypervirulence. PLoS ONE, 2010, 5, e9798.	1.1	43
51	Superantigens of Gram-positive bacteria: structure—function analyses and their implications for biological activity. Current Opinion in Microbiology, 1998, 1, 56-65.	2.3	42
52	Role of group A <i>Streptococcus</i> HtrA in the maturation of SpeB protease. Proteomics, 2007, 7, 4488-4498.	1.3	42
53	Role of superantigens in the pathogenesis of infectious diseases and their sequelae. Current Opinion in Infectious Diseases, 1992, 5, 364-374.	1.3	41
54	Induction of acute pancreatitis in germ-free rats: Evidence of a primary role for tumor necrosis factor-alpha. Surgery, 1995, 117, 201-205.	1.0	41

#	Article	IF	CITATIONS
55	Differential Regulation of Methionine Adenosyltransferase in Superantigen and Mitogen Stimulated Human T Lymphocytes. Journal of Biological Chemistry, 1997, 272, 16040-16047.	1.6	41
56	Infection and Autoimmunity: A Story of the Host, the Pathogen, and the Copathogen. Clinical Immunology and Immunopathology, 1995, 74, 10-22.	2.1	40
57	Calcium Channel Blockade Inhibits Release of TNFα and Improves Survival in a Rat Model of Acute Pancreatitis. Pancreas, 1996, 13, 22-28.	0.5	38
58	Parameters Governing Invasive Disease Propensity of Non-M1 Serotype Group A Streptococci. Journal of Innate Immunity, 2010, 2, 596-606.	1.8	36
59	Genetic Characterization and Virulence Role of the RALP3/LSA Locus Upstream of the Streptolysin S Operon in Invasive M1T1 Group A Streptococcus. Journal of Bacteriology, 2007, 189, 1322-1329.	1.0	35
60	Development of a Murine Model for Aerosolized Ebolavirus Infection Using a Panel of Recombinant Inbred Mice. Viruses, 2012, 4, 3468-3493.	1.5	34
61	Intracellular Streptococcus pyogenes in Human Macrophages Display an Altered Gene Expression Profile. PLoS ONE, 2012, 7, e35218.	1.1	33
62	The use of positive B cell flow cytometry crossmatch in predicting rejection among renal transplant recipients. Clinical Transplantation, 1999, 13, 83-89.	0.8	32
63	Genetic Architecture of Group A Streptococcal Necrotizing Soft Tissue Infections in the Mouse. PLoS Pathogens, 2016, 12, e1005732.	2.1	32
64	An Unbiased Systems Genetics Approach to Mapping Genetic Loci Modulating Susceptibility to Severe Streptococcal Sepsis. PLoS Pathogens, 2008, 4, e1000042.	2.1	31
65	Structural and Functional Properties of Antibodies to the Superantigen TSST-1 and Their Relationship to Menstrual Toxic Shock Syndrome. Journal of Clinical Immunology, 2007, 27, 327-338.	2.0	30
66	Commercial peptidoglycan preparations are contaminated with superantigen-like activity that stimulates IL-17 production. Journal of Leukocyte Biology, 2008, 83, 409-418.	1.5	29
67	Up-Regulation of TNFα mRNA in the Rat Spleen Following Induction of Acute Pancreatitis. Journal of Surgical Research, 1995, 59, 687-693.	0.8	28
68	Streptococcal Mitogenic Exotoxin, SmeZ, Is the Most Susceptible M1T1 Streptococcal Superantigen to Degradation by the Streptococcal Cysteine Protease, SpeB. Journal of Biological Chemistry, 2006, 281, 35281-35288.	1.6	27
69	Regulation of the Human MAT2A Gene Encoding the Catalytic α2 Subunit of Methionine Adenosyltransferase, MAT II. Journal of Biological Chemistry, 2001, 276, 9784-9791.	1.6	26
70	Diminished lung injury with vascular adhesion molecule-1 blockade in choline-deficient ethionine diet-induced pancreatitis. Surgery, 2003, 133, 186-196.	1.0	25
71	Individual Genetic Variations Directly Effect Polarization of Cytokine Responses to Superantigens Associated with Streptococcal Sepsis: Implications for Customized Patient Care. Journal of Immunology, 2011, 186, 3156-3163.	0.4	22
72	Regulation of human lymphocyte synthetase by product inhibition. BBA - Proteins and Proteomics, 1990, 1039, 253-260.	2.1	21

#	Article	IF	CITATIONS
73	Analysis of the TCR VÎ ² Specificities of Bacterial Superantigens Using PCR. ImmunoMethods, 1993, 2, 33-40.	0.8	21
74	Systemic Dysregulation of Angiopoietin-1 and -2 in Streptococcal Toxic Shock Syndrome. Clinical Infectious Diseases, 2011, 52, e157-e161.	2.9	21
75	Modulation of Expression of Superantigens by Human Transferrin and Lactoferrin: A Novel Mechanism in Hostâ€Streptococcus Interactions. Journal of Infectious Diseases, 2005, 191, 2121-2129.	1.9	20
76	Acute Pancreatitis Induces Cytokine Production in Endotoxin-Resistant Mice. Annals of Surgery, 1998, 227, 904-911.	2.1	20
77	Risk Factors in the Pathogenesis of Invasive Group A Streptococcal Infections: Role of Protective Humoral Immunity. Infection and Immunity, 1999, 67, 1871-1877.	1.0	20
78	Antigenic conservation of primary structural regions of S-adenosylmethionine synthetase. BBA - Proteins and Proteomics, 1990, 1040, 137-144.	2.1	18
79	Streptococcal collagenâ€like protein A and general stress protein 24 are immunomodulating virulence factors of group A Streptococcus. FASEB Journal, 2013, 27, 2633-2643.	0.2	18
80	A Forward Phenotypically Driven Unbiased Genetic Analysis of Host Genes That Moderate Herpes Simplex Virus Virulence and Stromal Keratitis in Mice. PLoS ONE, 2014, 9, e92342.	1.1	18
81	Correlation of genetic markers of rejection with biopsy findings following human pancreas transplant. Clinical Transplantation, 2006, 20, 106-112.	0.8	17
82	Molecular Requirements for MHC Class II α-Chain Engagement and Allelic Discrimination by the Bacterial Superantigen Streptococcal Pyrogenic Exotoxin C. Journal of Immunology, 2008, 181, 3384-3392.	0.4	17
83	Selective Targeting of Leukemic Cell Growth in Vivo and in Vitro Using a Gene Silencing Approach to Diminish S-Adenosylmethionine Synthesis. Journal of Biological Chemistry, 2008, 283, 30788-30795.	1.6	17
84	Differential signal requirements in T-cell activation by mitogen and superantigen. Cellular Signalling, 1990, 2, 521-530.	1.7	16
85	Metabolically active antigen presenting cells are required for human T cell proliferation in response to the superantigen streptococcal M protein. FEMS Microbiology Letters, 1992, 89, 155-164.	0.7	15
86	Inverse Relation between Disease Severity and Expression of the Streptococcal Cysteine Protease, SpeB, among Clonal M1T1 Isolates Recovered from Invasive Group A Streptococcal Infection Cases. Infection and Immunity, 2000, 68, 6362-6369.	1.0	15
87	Creation of a functional S -nitrosylation site in vitro by single point mutation. FEBS Letters, 1999, 459, 319-322.	1.3	14
88	Preferential stimulation of human lymphocytes by oligodeoxynucleotides that copy DNA CpG motifs present in virulent genes of group A streptococci. European Journal of Immunology, 2000, 30, 993-1001.	1.6	14
89	Regulation of S-Adenosylmethionine synthetase activity in cultured human lymphocytes. BBA - Proteins and Proteomics, 1991, 1077, 225-232.	2.1	12
90	Preservation of the Specificity of Superantigen to T Cell Receptor Vβ Elements in the Absence of MHC Class II Molecules. Cellular Immunology, 1993, 152, 348-357.	1.4	12

#	Article	IF	CITATIONS
91	Toxic Shock Syndrome: Characterization of Human Immune Responses to TSST-1 and Evidence for Sensitivity Thresholds. Toxicological Sciences, 2013, 134, 49-63.	1.4	12
92	Metal-Mediated Modulation of Streptococcal Cysteine Protease Activity and Its Biological Implications. Infection and Immunity, 2014, 82, 2992-3001.	1.0	12
93	Differential effect on polyamine metabolism in mitogen- and superantigen-activated human T-cells. Biochimica Et Biophysica Acta - General Subjects, 1998, 1425, 337-347.	1.1	11
94	Host Genetic Variations and Sex Differences Potentiate Predisposition, Severity, and Outcomes of Group A Streptococcus-Mediated Necrotizing Soft Tissue Infections. Infection and Immunity, 2016, 84, 416-424.	1.0	11
95	Characterization of distinct forms of methionine adenosyltransferase in nucleated, and mature human erythrocytes and erythroleukemic cells. Biochimica Et Biophysica Acta - General Subjects, 1994, 1201, 397-404.	1.1	10
96	Mapping of genetic loci that modulate differential colonization by Escherichia coli O157:H7 TUV86-2 in advanced recombinant inbred BXD mice. BMC Genomics, 2015, 16, 947.	1.2	10
97	Expression of Transforming Growth Factor-β by Human Islets: Impact on Islet Viability and Function. Cell Transplantation, 2007, 16, 775-785.	1.2	9
98	Activation of a novel isoform of methionine adenosyl transferase 2A and increased S-adenosylmethionine turnover in lung epithelial cells exposed to hyperoxia. Free Radical Biology and Medicine, 2006, 40, 348-358.	1.3	8
99	Heterogeneity in FoxP3- and GARP/LAP-Expressing T Regulatory Cells in an HLA Class II Transgenic Murine Model of Necrotizing Soft Tissue Infections by Group A Streptococcus. Infection and Immunity, 2018, 86, .	1.0	8
100	Distinct patterns of protein binding to the MAT2A promoter in normal and leukemic T cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2001, 1540, 32-42.	1.9	5
101	Failure of Viridans Group Streptococci Causing Bacteremia in Pediatric Oncology Patients to Express Superantigens. Journal of Pediatric Hematology/Oncology, 2006, 28, 627-629.	0.3	5
102	Novel Superantigens from Streptococcal Toxic Shock Syndrome Streptococcus pyogenes Isolates. Advances in Experimental Medicine and Biology, 1997, 418, 525-529.	0.8	5
103	SELECTIVE T CELL RECEPTOR V?? GENE USAGE BY ALLOREACTIVE T CELLS RESPONDING TO DEFINED HLA-DR ALLELES. Transplantation, 1996, 62, 1332-1340.	0.5	5
104	Staphylococcal and Streptococcal Superantigens: an Update. , 0, , 21-36.		5
105	Serine and tyrosine phosphorylation of 28- and 35-kDa proteins of human T lymphocytes stimulated by streptococcal M protein. Biochemical and Biophysical Research Communications, 1989, 158, 803-810.	1.0	4
106	Severe Invasive Group a Streptococcal Infections. , 2004, , 3-33.		4
107	Systems Genetics Approaches in Mouse Models of Group A Streptococcal Necrotizing Soft-Tissue Infections. Advances in Experimental Medicine and Biology, 2020, 1294, 151-166.	0.8	3

108 Viral Superantigens in Mice and Humans. , 0, , 59-75.

#	Article	IF	CITATIONS
109	Unbiased Forward Genetics and Systems Biology Approaches to Understanding how Gene-Environment Interactions Work to Predict Susceptibility and Outcomes of Infections. Novartis Foundation Symposium, 2008, 293, 156-167.	1.2	2
110	Intravenous Immunoglobulin Therapy in Superantigen-Mediated Toxic Shock Syndrome. , 0, , 195-215.		2
111	Integrating proteomics, genomics, and bioinformatics tools to define unique features of the clonal M1T1 strain of Streptococcus pyogenes. International Congress Series, 2006, 1289, 175-179.	0.2	1
112	Meta-analysis of genes within QTLs of group A streptococcal sepsis and their expression QTLs reveal pathways modulating host differential response to streptococcal sepsis. BMC Bioinformatics, 2012, 13, .	1.2	1
113	Prooxidant Mechanisms in Toxicology. BioMed Research International, 2014, 2014, 1-2.	0.9	1
114	Differential presentation of group A streptococcal superantigens by HLA class II DQ and DR alleles. , 2002, 32, 2570.		1
115	Novel Experimental Models for Dissecting Genetic Susceptibility of Superantigen-Mediated Diseases. , 0, , 183-194.		1
116	Small Nonpeptide Inhibitors of Staphylococcal Superantigen-Induced Cytokine Production and Toxic Shock. , 0, , 229-244.		1
117	Prospects for Group A Streptococcal Vaccine. , 1992, , 115-136.		1
118	Post-Streptococcal Autoimmune Sequelae: A Link Between Infection and Autoimmunity. Medical Science Symposia Series, 1994, , 37-50.	0.0	1
119	Bioinformatics analysis of immune response to group A streptococcal sepsis integrating quantitative trait loci mapping with genome-wide expression studies. BMC Bioinformatics, 2008, 9, P6.	1.2	0
120	Integrating neighbor clustering, coexpression clustering and subsystems analysis to define dynamic changes in regulatory networks associated with group A streptococcal sociomicrobiology and niche adaptation. BMC Bioinformatics, 2010, 11, .	1.2	0
121	Biotools for Determining the Genetics of Susceptibility to Infectious Diseases and Expediting Research Translation Into Effective Countermeasures. , 2008, , 13-17.		0
122	Selective Diminution of Leukemic Cell Growth by shRNAâ€Mediated Targeting of Sâ€Adenosylmethionine (SAMe) Metabolism. FASEB Journal, 2008, 22, 791.2.	0.2	0
123	Role of Superantigens in Molecular Mimicry and Autoimmunity. , 0, , 95-107.		0
124	The Streptococcal Superantigens. , 0, , 1-20.		0

The Streptococcal Superantigens., 0,, 1-20. 124

8