Lin He

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/120230/lin-he-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

3,363 139 33 52 h-index g-index citations papers 4,025 145 5.5 5.39 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
139	Creating custom-designed patterns of nanoscale graphene quantum dots. 2D Materials, 2022, 9, 02100	25.9	
138	Recent progresses of quantum confinement in graphene quantum dots. <i>Frontiers of Physics</i> , 2022 , 17, 1	3.7	3
137	Coexistence of electron whispering-gallery modes and atomic collapse states in graphene/WSe heterostructure quantum dots <i>Nature Communications</i> , 2022 , 13, 1597	17.4	2
136	Tailoring the Energy Landscape of Graphene Nanostructures on Graphene and Manipulating Them Using Tilt Grain Boundaries. <i>Physical Review Applied</i> , 2022 , 17,	4.3	1
135	Temperature-sensitive spatial distribution of defects in PdSe2 flakes. <i>Physical Review Materials</i> , 2021 , 5,	3.2	3
134	Enhanced Valley Polarization of Bilayer MoSe with Variable Stacking Order and Interlayer Coupling. Journal of Physical Chemistry Letters, 2021 , 12, 5879-5888	6.4	2
133	Lattice-Matched Metal-Semiconductor Heterointerface in Monolayer CuTe. ACS Nano, 2021, 15, 3415-3	426 .7	8
132	Quantum Interferences of Pseudospin-Mediated Atomic-Scale Vortices in Monolayer Graphene. <i>Nano Letters</i> , 2021 , 21, 2526-2531	11.5	1
131	Local measurements of tunneling magneto-conductance oscillations in monolayer, Bernal-stacked bilayer, and ABC-stacked trilayer graphene. <i>Science China: Physics, Mechanics and Astronomy</i> , 2021 , 64, 1	3.6	1
130	Oscillations of the Spacing between van Hove Singularities Induced by sub-figstrom Fluctuations of Interlayer Spacing in Graphene Superlattices <i>Physical Review Letters</i> , 2021 , 127, 266801	7.4	4
129	Tunable Lattice Reconstruction, Triangular Network of Chiral One-Dimensional States, and Bandwidth of Flat Bands in Magic Angle Twisted Bilayer Graphene. <i>Physical Review Letters</i> , 2020 , 125, 236102	7.4	9
128	Enhancement of the Photoelectrocatalytic H2 Evolution on a Rutile-TiO2(001) Surface Decorated with Dendritic MoS2 Monolayer Nanoflakes. <i>ACS Applied Energy Materials</i> , 2020 , 3, 5756-5764	6.1	8
127	Coulomb interaction in quasibound states of graphene quantum dots. <i>Physical Review B</i> , 2020 , 101,	3.3	9
126	Valley Polarization and Inversion in Strained Graphene via Pseudo-Landau Levels, Valley Splitting of Real Landau Levels, and Confined States. <i>Physical Review Letters</i> , 2020 , 124, 106802	7.4	27
125	Spectroscopic characterization of Landau-level splitting and the intermediate v=0 phase in bilayer graphene. <i>Physical Review B</i> , 2020 , 101,	3.3	1
124	Enhancement of Rashba spin-orbit coupling by electron confinement at the LaAlO/SrTiO interface. Journal of Physics Condensed Matter, 2020 , 32, 235003	1.8	1
123	Nanoscale probing of broken-symmetry states in graphene induced by individual atomic impurities. <i>Physical Review B</i> , 2020 , 101,	3.3	3

(2019-2020)

122	Movable Valley Switch Driven by Berry Phase in Bilayer-Graphene Resonators. <i>Physical Review Letters</i> , 2020 , 124, 166801	7.4	6
121	Twistronics in graphene-based van der Waals structures. <i>Chinese Physics B</i> , 2020 , 29, 117303	1.2	7
120	Large linear magnetoresistance caused by disorder in WTe thin film. <i>Journal of Physics Condensed Matter</i> , 2020 , 32, 355703	1.8	1
119	Planar Hall effect induced by anisotropic orbital magnetoresistance in type-II Dirac semimetal PdTe. <i>Journal of Physics Condensed Matter</i> , 2020 , 32, 015702	1.8	11
118	Tunable magnetism of a single-carbon vacancy in graphene. Science Bulletin, 2020, 65, 194-200	10.6	11
117	Robust atomic-structure of the 6 12 reconstruction surface of Ge(110) protected by the electronically transparent graphene monolayer. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 22711-22	2718	1
116	Spectroscopic Evidence for a Spin- and Valley-Polarized Metallic State in a Nonmagic-Angle Twisted Bilayer Graphene. <i>ACS Nano</i> , 2020 , 14, 13081-13090	16.7	3
115	Relativistic Artificial Molecules Realized by Two Coupled Graphene Quantum Dots. <i>Nano Letters</i> , 2020 , 20, 6738-6743	11.5	4
114	Experimental evidence for orbital magnetic moments generated by moirEscale current loops in twisted bilayer graphene. <i>Physical Review B</i> , 2020 , 102,	3.3	16
113	Local Berry Phase Signatures of Bilayer Graphene in Intervalley Quantum Interference. <i>Physical Review Letters</i> , 2020 , 125, 116804	7.4	8
112	Correlation-induced valley splitting and orbital magnetism in a strain-induced zero-energy flatband in twisted bilayer graphene near the magic angle. <i>Physical Review B</i> , 2020 , 102,	3.3	9
111	Observation of phonon peaks and electron-phonon bound states in graphene. <i>Physical Review B</i> , 2019 , 100,	3.3	5
110	Scanning tunneling microscope study of quantum Hall isospin ferromagnetic states in the zero Landau level in a graphene monolayer. <i>Physical Review B</i> , 2019 , 100,	3.3	24
109	Magnetism near half-filling of a Van Hove singularity in twisted graphene bilayer. <i>Physical Review B</i> , 2019 , 99,	3.3	19
108	Nanoscale detection of valley-dependent spin splitting around atomic defects of graphene. <i>2D Materials</i> , 2019 , 6, 031005	5.9	11
107	High-Magnetic-Field Tunneling Spectra of ABC-Stacked Trilayer Graphene on Graphite. <i>Physical Review Letters</i> , 2019 , 122, 146802	7.4	15
106	Scanning tunneling microscopy study of the quasicrystalline 30° twisted bilayer graphene. <i>2D Materials</i> , 2019 , 6, 045041	5.9	14
105	Programmable graphene nanobubbles with three-fold symmetric pseudo-magnetic fields. <i>Nature Communications</i> , 2019 , 10, 3127	17.4	35

104	Controlled synthesis of 2D MoC/graphene heterostructure on liquid Au substrates as enhanced electrocatalytic electrodes. <i>Nanotechnology</i> , 2019 , 30, 385601	3.4	28
103	Mo Concentration Controls the Morphological Transitions from Dendritic to Semicompact, and to Compact Growth of Monolayer Crystalline MoS on Various Substrates. <i>ACS Applied Materials & Interfaces</i> , 2019 , 11, 42751-42759	9.5	16
102	Imaging the dynamics of an individual hydrogen atom intercalated between two graphene sheets. <i>Physical Review B</i> , 2018 , 97,	3.3	5
101	Influence of In-Gap States on the Formation of Two-Dimensional Election Gas at ABO/SrTiO Interfaces. <i>Scientific Reports</i> , 2018 , 8, 195	4.9	5
100	Scanning tunneling microscopy and spectroscopy of twisted trilayer graphene. <i>Physical Review B</i> , 2018 , 97,	3.3	17
99	Generating atomically sharp pl junctions in graphene and testing quantum electron optics on the nanoscale. <i>Physical Review B</i> , 2018 , 97,	3.3	28
98	Formation of Two-dimensional Electron Gas at Amorphous/Crystalline Oxide Interfaces. <i>Scientific Reports</i> , 2018 , 8, 404	4.9	17
97	Magnetic-field-controlled negative differential conductance in scanning tunneling spectroscopy of graphene npn junction resonators. <i>Physical Review B</i> , 2018 , 97,	3.3	13
96	High-resolution tunneling spectroscopy of ABA-stacked trilayer graphene. <i>Physical Review B</i> , 2018 , 98,	3.3	5
95	Conductivity and band alignment of LaCrO 3 /SrTiO 3 (111) heterostructure. <i>Chinese Physics B</i> , 2018 , 27, 047301	1.2	3
94	Controlling the dendritic structure and the photo-electrocatalytic properties of highly crystalline MoS 2 on sapphire substrate. <i>2D Materials</i> , 2018 , 5, 031015	5.9	9
93	Two-dimensional spinodal interface in one-step grown graphene-molybdenum carbide heterostructures. <i>Physical Review Materials</i> , 2018 , 2,	3.2	6
92	Spin-Polarized Semiconducting Band Structure of Monolayer Graphene on Ni(111). <i>Physical Review Applied</i> , 2018 , 10,	4.3	4
91	Interaction between in-gap states and carriers at the conductive interface between perovskite oxides. <i>Journal of Physics Condensed Matter</i> , 2018 , 30, 405002	1.8	
90	Twisted graphene bilayer around the first magic angle engineered by heterostrain. <i>Physical Review B</i> , 2018 , 98,	3.3	43
89	Spatial confinement, magnetic localization, and their interactions on massless Dirac fermions. <i>Physical Review B</i> , 2018 , 98,	3.3	7
88	Modulating the Electronic Properties of Graphene by Self-Organized Sulfur Identical Nanoclusters and Atomic Superlattices Confined at an Interface. <i>ACS Nano</i> , 2018 , 12, 10984-10991	16.7	14
87	Large negative magnetoresistance driven by enhanced weak localization and Kondo effect at the interface of LaAlO3 and Fe-doped SrTiO3. <i>Physical Review B</i> , 2018 , 98,	3.3	13

86	Tunneling Spectra of a Quasifreestanding Graphene Monolayer. Physical Review Applied, 2018, 9,	4.3	19
85	Bound states in nanoscale graphene quantum dots in a continuous graphene sheet. <i>Physical Review B</i> , 2017 , 95,	3.3	19
84	Observation of chirality transition of quasiparticles at stacking solitons in trilayer graphene. <i>Physical Review B</i> , 2017 , 95,	3.3	14
83	Landau quantization of Dirac fermions in graphene and its multilayers. <i>Frontiers of Physics</i> , 2017 , 12, 1	3.7	35
82	Stacking transition in bilayer graphene caused by thermally activated rotation. 2D Materials, 2017 , 4, 011013	5.9	18
81	Splitting of Van Hove singularities in slightly twisted bilayer graphene. <i>Physical Review B</i> , 2017 , 96,	3.3	23
80	Scanning tunneling microscopy and spectroscopy of finite-size twisted bilayer graphene. <i>Physical Review B</i> , 2017 , 96,	3.3	9
79	Massless Dirac fermions trapping in a quasi-one-dimensional npn junction of a continuous graphene monolayer. <i>Physical Review B</i> , 2017 , 95,	3.3	19
78	One-step synthesis of van der Waals heterostructures of graphene and two-dimensional superconducting Mo2C. <i>Physical Review B</i> , 2017 , 95,	3.3	40
77	Temperature dependence of the conductive layer thickness at the LaAlO3/SrTiO3 heterointerface. <i>Physical Review B</i> , 2017 , 96,	3.3	5
76	Experimental observation of surface states and Landau levels bending in bilayer graphene. <i>Physical Review B</i> , 2016 , 93,	3.3	24
75	Spatially resolving unconventional interface Landau quantization in a graphene monolayer-bilayer planar junction. <i>Physical Review B</i> , 2016 , 93,	3.3	13
74	Reply to Comment on Creating in-plane pseudomagnetic fields in excess of 1000 T by misoriented stacking in a graphene bilayer Physical Review B, 2016 , 93,	3.3	1
73	Energy gaps of atomically precise armchair graphene sidewall nanoribbons. <i>Physical Review B</i> , 2016 , 93,	3.3	38
72	Observation of quantum Griffiths singularity and ferromagnetism at the superconducting LaAlO3/SrTiO3(110) interface. <i>Physical Review B</i> , 2016 , 94,	3.3	29
71	Direct imaging of topological edge states at a bilayer graphene domain wall. <i>Nature Communications</i> , 2016 , 7, 11760	17.4	116
70	Dielectric Engineering of a Boron Nitride/Hafnium Oxide Heterostructure for High-Performance 2D Field Effect Transistors. <i>Advanced Materials</i> , 2016 , 28, 2062-9	24	48
69	Wide-band-gap wrinkled nanoribbon-like structures in a continuous metallic graphene sheet. <i>Physical Review B</i> , 2016 , 94,	3.3	4

68	Scanning Tunneling Microscopy of the IMagnetism of a Single Carbon Vacancy in Graphene. <i>Physical Review Letters</i> , 2016 , 117, 166801	7.4	87
67	Direct probing of the stacking order and electronic spectrum of rhombohedral trilayer graphene with scanning tunneling microscopy. <i>Physical Review B</i> , 2015 , 91,	3.3	21
66	Landau quantization in graphene monolayer, Bernal bilayer, and Bernal trilayer on graphite surface. <i>Physical Review B</i> , 2015 , 91,	3.3	45
65	Experimental evidence for non-Abelian gauge potentials in twisted graphene bilayers. <i>Physical Review B</i> , 2015 , 92,	3.3	52
64	Reconstruction of electrostatic field at the interface leads to formation of two-dimensional electron gas at multivalent (110)LaAlO3/SrTiO3 interfaces. <i>Physical Review B</i> , 2015 , 92,	3.3	10
63	Detecting giant electron-hole asymmetry in a graphene monolayer generated by strain and charged-defect scattering via Landau level spectroscopy. <i>Physical Review B</i> , 2015 , 92,	3.3	29
62	Observation of unconventional splitting of Landau levels in strained graphene. <i>Physical Review B</i> , 2015 , 92,	3.3	37
61	Atomic resolution imaging of the two-component Dirac-Landau levels in a gapped graphene monolayer. <i>Physical Review B</i> , 2015 , 92,	3.3	23
60	Landau quantization and Fermi velocity renormalization in twisted graphene bilayers. <i>Physical Review B</i> , 2015 , 92,	3.3	49
59	Origin of room-temperature single-channel ballistic transport in zigzag graphene nanoribbons. <i>Science China Materials</i> , 2015 , 58, 677-682	7.1	4
58	Layer-stacking growth and electrical transport of hierarchical graphene architectures. <i>Advanced Materials</i> , 2014 , 26, 3218-24	24	30
57	Graphene: Layer-Stacking Growth and Electrical Transport of Hierarchical Graphene Architectures (Adv. Mater. 20/2014). <i>Advanced Materials</i> , 2014 , 26, 3355-3355	24	
56	Graphene: Controlled Growth of Single-Crystal Twelve-Pointed Graphene Grains on a Liquid Cu Surface (Adv. Mater. 37/2014). <i>Advanced Materials</i> , 2014 , 26, 6519-6519	24	1
55	Creating one-dimensional nanoscale periodic ripples in a continuous mosaic graphene monolayer. <i>Physical Review Letters</i> , 2014 , 113, 086102	7.4	97
54	Angle-dependent van Hove singularities and their breakdown in twisted graphene bilayers. <i>Physical Review B</i> , 2014 , 90,	3.3	40
53	Controlled growth of single-crystal twelve-pointed graphene grains on a liquid Cu surface. <i>Advanced Materials</i> , 2014 , 26, 6423-9	24	50
52	Unveiling the structural origin of the high carrier mobility of a molecular monolayer on boron nitride. <i>Physical Review B</i> , 2014 , 90,	3.3	12
51	In-plane chiral tunneling and out-of-plane valley-polarized quantum tunneling in twisted graphene trilayer. <i>Physical Review B</i> , 2014 , 90,	3.3	6

(2012-2014)

50	Creating in-plane pseudomagnetic fields in excess of 1000 T by misoriented stacking in a graphene bilayer. <i>Physical Review B</i> , 2014 , 89,	3.3	29
49	Two-dimensional quasi-freestanding molecular crystals for high-performance organic field-effect transistors. <i>Nature Communications</i> , 2014 , 5, 5162	17.4	270
48	Tuning structures and electronic spectra of graphene layers with tilt grain boundaries. <i>Physical Review B</i> , 2014 , 89,	3.3	37
47	Carrier-mediated Kondo effect and Hall mobility by electrolyte gating in slightly doped anatase TiO2 films. <i>Physical Review B</i> , 2014 , 90,	3.3	6
46	Two-dimensional superconductivity at (110) LaAlO3/SrTiO3 interfaces. <i>Applied Physics Letters</i> , 2014 , 105, 192603	3.4	24
45	Coupled spin and pseudomagnetic field in graphene nanoribbons. <i>Physical Review B</i> , 2013 , 88,	3.3	10
44	Strain and curvature induced evolution of electronic band structures in twisted graphene bilayer. <i>Nature Communications</i> , 2013 , 4, 2159	17.4	127
43	Hierarchy of graphene wrinkles induced by thermal strain engineering. <i>Applied Physics Letters</i> , 2013 , 103, 251610	3.4	71
42	Superlattice Dirac points and space-dependent Fermi velocity in a corrugated graphene monolayer. <i>Physical Review B</i> , 2013 , 87,	3.3	48
41	Electronic structures of graphene layers on a metal foil: The effect of atomic-scale defects. <i>Applied Physics Letters</i> , 2013 , 103, 143120	3.4	31
40	Coexistence of van Hove singularities and superlattice Dirac points in a slightly twisted graphene bilayer. <i>Physical Review B</i> , 2013 , 87,	3.3	33
39	Chiral tunneling in a twisted graphene bilayer. <i>Physical Review Letters</i> , 2013 , 111, 066803	7.4	55
38	Strain-induced one-dimensional Landau level quantization in corrugated graphene. <i>Physical Review B</i> , 2013 , 87,	3.3	63
37	Ultrathin Fe2O3 Nanoribbons and Their Moir Patterns. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 6879-6883	3.8	12
36	Single-layer behavior and slow carrier density dynamic of twisted graphene bilayer. <i>Applied Physics Letters</i> , 2012 , 100, 091601	3.4	17
35	Angle-dependent van Hove singularities in a slightly twisted graphene bilayer. <i>Physical Review Letters</i> , 2012 , 109, 126801	7.4	164
34	Anomalous magnetic properties of 7 nm single-crystal Co3O4 nanowires. <i>Journal of Applied Physics</i> , 2012 , 111, 013910	2.5	14
33	Observation of Landau-level-like quantization at 77 K along a strained-induced graphene ridge. <i>Physical Review B</i> , 2012 , 85,	3.3	51

32	Enhanced intervalley scattering of twisted bilayer graphene by periodic AB stacked atoms. <i>Physical Review B</i> , 2012 , 85,	3.3	23
31	Flat bands near Fermi level of topological line defects on graphite. <i>Applied Physics Letters</i> , 2012 , 101, 113113	3.4	27
30	Stabilization variation of organic conductor surfaces induced by Btacking interactions. <i>Chinese Physics B</i> , 2012 , 21, 056801	1.2	
29	Zero-bias anomaly in one-dimensional ultrathin metallic nanowires. <i>AIP Advances</i> , 2012 , 2, 032143	1.5	7
28	Ultrathin Co3O4 nanowires with high catalytic oxidation of CO. Chemical Communications, 2011 , 47, 1127	59881	77
27	Ultrathin Au-Ag bimetallic nanowires with Coulomb blockade effects. <i>Chemical Communications</i> , 2011 , 47, 5160-2	5 .8	67
26	Transition metal oxide nanowires synthesized by heating metal substrates. <i>Materials Research Bulletin</i> , 2011 , 46, 2120-2124	5.1	10
25	The Ho thickness dependence of spin-triplet supercurrents in Nb/Ho/Co/Ho/Nb films. <i>Solid State Communications</i> , 2011 , 151, 651-652	1.6	2
24	Zero-magnetization ferromagnet induced by hydrogenation. <i>Solid State Communications</i> , 2011 , 151, 985	1987	4
23	Periodic magnetoresistance oscillations induced by superconducting vortices in single crystal Au nanowires. <i>Nanotechnology</i> , 2011 , 22, 445704	3.4	2
22	Effect of exchange-type zero-bias anomaly on single-electron tunneling of Au nanoparticles. Physical Review B, 2011 , 84,	3.3	3
21	Comment on "Coexistence of Coulomb blockade and zero bias anomaly in a strongly coupled nanodot". <i>Physical Review Letters</i> , 2011 , 107, 079701; author reply 079702	7.4	4
20	Parallel versus antiparallel interfacial exchange coupling in ferromagnet/spin-glasses. <i>Journal of Applied Physics</i> , 2011 , 109, 123915	2.5	5
19	Scanning tunnelling microscope studies of angstrom-scale Co3O4 nanowires. <i>Nanotechnology</i> , 2010 , 21, 335605	3.4	11
18	Comment on "Evidence for quantization of mechanical rotation of magnetic nanoparticles". Physical Review Letters, 2010 , 105, 049701; author reply 049702	7.4	0
17	Comment on Coexistence of ferromagnetism and superconductivity in Sn nanoparticles (IPhysical Review B, 2010 , 82,	3.3	1
16	Comment on Diameter dependence of ferromagnetic spin moment in Au nanocrystals Physical Review B, 2010, 81,	3.3	9
15	Inhibited single-electron transfer by electronic band gap of two-dimensional Au quantum dot superlattice. <i>Applied Physics Letters</i> , 2010 , 97, 113101	3-4	7

LIST OF PUBLICATIONS

14	Unexpected Magnetic Moments in Ultrafine Diamagnetic Systems. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 12487-12489	3.8	5
13	Evidence for surface states in a single 3 nm diameter Co3O4 nanowire. <i>Applied Physics Letters</i> , 2010 , 96, 262106	3.4	7
12	Competition of the antiferromagnetic superexchange with the ferromagnetic double exchange in dicobalt complexes. <i>Applied Physics Letters</i> , 2010 , 97, 182509	3.4	5
11	Hexagonal close-packed nickel or Ni3C?. Journal of Magnetism and Magnetic Materials, 2010, 322, 1991	-1 <u>9</u> . § 3	48
10	The magnetic ordering temperature of Cu, Mn, and Fe elements in. <i>Solid State Communications</i> , 2010 , 150, 187-188	1.6	2
9	Origin of the anomalous size dependent blocking temperature of nanoparticles. <i>Solid State Communications</i> , 2010 , 150, 743-745	1.6	5
8	Weak ferromagnetism and spin-glass state with nanosized nickel carbide. <i>Journal of Applied Physics</i> , 2009 , 105, 123923	2.5	19
7	Ni/Ni3C core-shell nanochains and its magnetic properties: one-step synthesis at low temperature. <i>Nano Letters</i> , 2008 , 8, 1147-52	11.5	90
6	Collective magnetization flux closure state with circular array of single-domained nanomagnets: Magnetization reversal and chirality control. <i>Journal of Applied Physics</i> , 2008 , 103, 114312	2.5	7
5	Effect of temperature-dependent shape anisotropy on coercivity for aligned Stoner-Wohlfarth soft ferromagnets. <i>Physical Review B</i> , 2007 , 75,	3.3	38
4	Facile synthesis of monodisperse Mn3O4 tetragonal nanoparticles and their large-scale assembly into highly regular walls by a simple solution route. <i>Small</i> , 2007 , 3, 606-10	11	95
3	Anisotropy and magnetization reversal with chains of submicron-sized Co hollow spheres. <i>Physical Review B</i> , 2007 , 75,	3.3	19
2	Finite size effect on NBI temperature with Co3O4 nanoparticles. <i>Journal of Applied Physics</i> , 2007 , 102, 103911	2.5	82
1	Size-dependent magnetic properties of nickel nanochains. <i>Journal of Physics Condensed Matter</i> , 2007 , 19, 036216	1.8	36