Changwei Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1202274/publications.pdf

Version: 2024-02-01

223 papers

8,677 citations

44069 48 h-index 79 g-index

224 all docs

224 docs citations

224 times ranked 8296 citing authors

#	Article	IF	Citations
1	The production of furfural directly from hemicellulose in lignocellulosic biomass: A review. Catalysis Today, 2019, 319, 14-24.	4.4	281
2	Biorenewable hydrogen production through biomass gasification: A review and future prospects. Environmental Research, 2020, 186, 109547.	7.5	280
3	Low-temperature catalytic CO2 dry reforming of methane on Ni-based catalysts: A review. Fuel Processing Technology, 2018, 169, 199-206.	7.2	275
4	Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biology and Biochemistry, 2010, 42, 586-591.	8.8	272
5	Low-Temperature Catalytic CO ₂ Dry Reforming of Methane on Ni-Si/ZrO ₂ Catalyst. ACS Catalysis, 2018, 8, 6495-6506.	11.2	220
6	Copper and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in the microalga Pavlova viridis (Prymnesiophyceae). Chemosphere, 2006, 62, 565-572.	8.2	218
7	Recent Advances in the Catalytic Depolymerization of Lignin towards Phenolic Chemicals: A Review. ChemSusChem, 2020, 13, 4296-4317.	6.8	207
8	Asymmetric Direct Aldol Reaction of Functionalized Ketones Catalyzed by Amine Organocatalysts Based on Bispidine. Journal of the American Chemical Society, 2008, 130, 5654-5655.	13.7	162
9	Mechanistic Study of Glucose-to-Fructose Isomerization in Water Catalyzed by [Al(OH) ₂ (aq)] ⁺ . ACS Catalysis, 2015, 5, 5097-5103.	11,2	161
10	Nutrient removal and biogas upgrading by integrating freshwater algae cultivation with piggery anaerobic digestate liquid treatment. Applied Microbiology and Biotechnology, 2015, 99, 6493-6501.	3.6	137
11	Insights into the Kinetics and Reaction Network of Aluminum Chloride-Catalyzed Conversion of Glucose in NaCl–H ₂ O/THF Biphasic System. ACS Catalysis, 2017, 7, 256-266.	11.2	133
12	Effects of various LED light wavelengths and intensities on microalgae-based simultaneous biogas upgrading and digestate nutrient reduction process. Bioresource Technology, 2013, 136, 461-468.	9.6	120
13	Promoting Effect of Sodium Chloride on the Solubilization and Depolymerization of Cellulose from Raw Biomass Materials in Water. ChemSusChem, 2015, 8, 1901-1907.	6.8	120
14	Selective conversion of lignin in corncob residue to monophenols with high yield and selectivity. Green Chemistry, 2014, 16, 4257-4265.	9.0	113
15	Production of high-grade diesel from palmitic acid over activated carbon-supported nickel phosphide catalysts. Applied Catalysis B: Environmental, 2016, 187, 375-385.	20.2	113
16	Ecotoxicological effects of graphene oxide on the protozoan Euglena gracilis. Chemosphere, 2015, 128, 184-190.	8.2	95
17	Performance of three microalgal strains in biogas slurry purification and biogas upgrade in response to various mixed light-emitting diode light wavelengths. Bioresource Technology, 2015, 187, 338-345.	9.6	93
18	The degradation of the lignin in Phyllostachys heterocycla cv. pubescens in an ethanol solvothermal system. Green Chemistry, 2014, 16, 3107-3116.	9.0	91

#	Article	IF	CITATIONS
19	Selective extraction and conversion of lignin in actual biomass to monophenols: A review. Journal of Energy Chemistry, 2016, 25, 947-956.	12.9	82
20	Insights into the Influence of ZrO ₂ Crystal Structures on Methyl Laurate Hydrogenation over Co/ZrO ₂ Catalysts. ACS Catalysis, 2021, 11, 7099-7113.	11.2	82
21	Graphite oxide- and graphene oxide-supported catalysts for microwave-assisted glucose isomerisation in water. Green Chemistry, 2019, 21, 4341-4353.	9.0	80
22	To evaluate the toxicity of atrazine on the freshwater microalgae Chlorella sp. using sensitive indices indicated by photosynthetic parameters. Chemosphere, 2020, 244, 125514.	8.2	77
23	Comparative study on the promotion effect of Mn and Zr on the stability of Ni/SiO2 catalyst for CO2 reforming of methane. International Journal of Hydrogen Energy, 2013, 38, 7268-7279.	7.1	76
24	The production of diesel-like hydrocarbons from palmitic acid over HZSM-22 supported nickel phosphide catalysts. Applied Catalysis B: Environmental, 2015, 174-175, 504-514.	20.2	76
25	Catalytic depolymerization of organosolv lignin to phenolic monomers and low molecular weight oligomers. Fuel, 2019, 244, 247-257.	6.4	76
26	Simultaneously upgrading biogas and purifying biogas slurry using cocultivation of Chlorella vulgaris and three different fungi under various mixed light wavelength and photoperiods. Bioresource Technology, 2017, 241, 701-709.	9.6	72
27	Microwave-enhanced pyrolysis of natural algae from water blooms. Bioresource Technology, 2016, 212, 311-317.	9.6	71
28	Adsorption of Cu2+, Pb2+, and Cd2+ onto oiltea shell from water. Bioresource Technology, 2019, 271, 487-491.	9.6	70
29	Selective Conversion of Cellulose in Corncob Residue to Levulinic Acid in an Aluminum Trichloride–Sodium Chloride System. ChemSusChem, 2014, 7, 2482-2488.	6.8	68
30	Unique Steric Effect of Geminal Bis(silane) To Control the High <i>Exo</i> selectivity in Intermolecular Diels–Alder Reaction. Journal of the American Chemical Society, 2016, 138, 1877-1883.	13.7	68
31	Synthesis gas production from CO2 reforming of methane over Ni–Ce/SiO2 catalyst: The effect of calcination ambience. International Journal of Hydrogen Energy, 2013, 38, 117-126.	7.1	67
32	Co-pelletization of microalgae and fungi for efficient nutrient purification and biogas upgrading. Bioresource Technology, 2019, 289, 121656.	9.6	67
33	Low temperature hydroxylation of benzene to phenol by hydrogen peroxide over Fe/activated carbon catalyst. Journal of Molecular Catalysis A, 2007, 272, 169-173.	4.8	66
34	Influence of green solvent on levulinic acid production from lignocellulosic paper waste. Bioresource Technology, 2020, 298, 122544.	9.6	66
35	Evaluation of growth and biochemical indicators of Salvinia natans exposed to zinc oxide nanoparticles and zinc accumulation in plants. Environmental Science and Pollution Research, 2014, 21, 732-739.	5.3	62
36	Low-temperature CO2 reforming of methane on Zr-promoted Ni/SiO2 catalyst. Fuel Processing Technology, 2016, 144, 1-7.	7.2	62

#	Article	IF	Citations
37	Individual Pathways in the Formation of Magic-Size Clusters and Conventional Quantum Dots. Journal of Physical Chemistry Letters, 2018, 9, 3660-3666.	4.6	62
38	Effects of plant and influent C:N:P ratio on microbial diversity in pilot-scale constructed wetlands. Ecological Engineering, 2010, 36, 441-449.	3.6	59
39	Mechanistic understanding of salt-assisted autocatalytic hydrolysis of cellulose. Sustainable Energy and Fuels, 2018, 2, 936-940.	4.9	57
40	Effect of graphene oxide on copper stress in Lemna minor L.: evaluating growth, biochemical responses, and nutrient uptake. Journal of Hazardous Materials, 2018, 341, 168-176.	12.4	57
41	CO ₂ reforming of methane over Mg-promoted Ni/SiO ₂ catalysts: the influence of Mg precursors and impregnation sequences. Catalysis Science and Technology, 2012, 2, 529-537.	4.1	55
42	Understanding the cleavage of inter- and intramolecular linkages in corncob residue for utilization of lignin to produce monophenols. Green Chemistry, 2016, 18, 4109-4115.	9.0	55
43	Controlling the cleavage of the inter- and intra-molecular linkages in lignocellulosic biomass for further biorefining: A review. Bioresource Technology, 2018, 256, 466-477.	9.6	55
44	Suppression of oligomer formation in glucose dehydration by CO ₂ and tetrahydrofuran. Green Chemistry, 2017, 19, 3334-3343.	9.0	55
45	Biochemical Responses of Duckweed (Spirodela polyrhiza) to Zinc Oxide Nanoparticles. Archives of Environmental Contamination and Toxicology, 2013, 64, 643-651.	4.1	53
46	Performance of piggery wastewater treatment and biogas upgrading by three microalgal cultivation technologies under different initial COD concentration. Energy, 2018, 165, 360-369.	8.8	53
47	Microwave-assisted depolymerization of various types of waste lignins over two-dimensional CuO/BCN catalysts. Green Chemistry, 2020, 22, 725-736.	9.0	52
48	Microwave-assisted hydrothermal selective dissolution and utilisation of hemicellulose in Phyllostachys heterocycla cv. pubescens. Green Chemistry, 2017, 19, 4889-4899.	9.0	51
49	Effects of various LED light wavelengths and light intensity supply strategies on synthetic high-strength wastewater purification by Chlorella vulgaris. Biodegradation, 2013, 24, 721-732.	3.0	50
50	Fractionation for further conversion: from raw corn stover to lactic acid. Scientific Reports, 2016, 6, 38623.	3.3	50
51	A Simple Two-Step Method for the Selective Conversion of Hemicellulose in <i>Pubescens</i> to Furfural. ACS Sustainable Chemistry and Engineering, 2017, 5, 8137-8147.	6.7	50
52	Performance of different microalgae-based technologies in biogas slurry nutrient removal and biogas upgrading in response to various initial CO2 concentration and mixed light-emitting diode light wavelength treatments. Journal of Cleaner Production, 2017, 166, 408-416.	9.3	50
53	Low temperature catalytic conversion of oligomers derived from lignin in pubescens on Pd/NbOPO4. Applied Catalysis B: Environmental, 2020, 263, 118325.	20.2	49
54	Selective hydrogenation of furfural to furfuryl alcohol in water under mild conditions over a hydrotalcite-derived Pt-based catalyst. Applied Catalysis B: Environmental, 2022, 309, 121260.	20.2	49

#	Article	IF	CITATIONS
55	Phenol hydroxylation over Fe-incorporated mesoporous materials prepared by coprecipitation. Microporous and Mesoporous Materials, 2013, 182, 62-72.	4.4	48
56	Preparation of Fe/activated carbon directly from rice husk pyrolytic carbon and its application in catalytic hydroxylation of phenol. RSC Advances, 2015, 5, 4984-4992.	3.6	48
57	The influence of reduction temperature on the performance of ZrOx/Ni-MnOx/SiO2 catalyst for low-temperature CO2 reforming of methane. Catalysis Today, 2017, 281, 259-267.	4.4	48
58	Performance of CO2 concentrations on nutrient removal and biogas upgrading by integrating microalgal strains cultivation with activated sludge. Energy, 2016, 97, 229-237.	8.8	47
59	Directing the Simultaneous Conversion of Hemicellulose and Cellulose in Raw Biomass to Lactic Acid. ACS Sustainable Chemistry and Engineering, 2020, 8, 4244-4255.	6.7	47
60	Solvent Effects on Degradative Condensation Side Reactions of Fructose in Its Initial Conversion to 5â€Hydroxymethylfurfural. ChemSusChem, 2020, 13, 501-512.	6.8	46
61	One-Step Synthesis of Highly Active and Stable Ni–ZrO _{<i>x</i>} for Dry Reforming of Methane. Industrial & Dry Reforming Chemistry Research, 2020, 59, 11441-11452.	3.7	46
62	Effect of light intensity on the capability of different microalgae species for simultaneous biogas upgrading and biogas slurry nutrient reduction. International Biodeterioration and Biodegradation, 2015, 104, 157-163.	3.9	44
63	Graphene oxide alleviates the ecotoxicity of copper on the freshwater microalga Scenedesmus obliquus. Ecotoxicology and Environmental Safety, 2016, 132, 360-365.	6.0	44
64	General low-temperature reaction pathway from precursors to monomers before nucleation of compound semiconductor nanocrystals. Nature Communications, 2016, 7, 12223.	12.8	44
65	Application of Fe/Activated Carbon Catalysts in the Hydroxylation of Phenol to Dihydroxybenzenes. Industrial & Dihydroxybenzenes Chemistry Research, 2014, 53, 2932-2939.	3.7	43
66	Sodium Chloride-Assisted Depolymerization of Xylo-oligomers to Xylose. ACS Sustainable Chemistry and Engineering, 2018, 6, 4098-4104.	6.7	43
67	Production of high-quality biofuel via ethanol liquefaction of pretreated natural microalgae. Renewable Energy, 2020, 147, 293-301.	8.9	42
68	Effects of influent C/N ratios on wastewater nutrient removal and simultaneous greenhouse gas emission from the combinations of vertical subsurface flow constructed wetlands and earthworm eco-filters for treating synthetic wastewater. Environmental Sciences: Processes and Impacts, 2014, 16, 567.	3.5	41
69	Acute toxicity of multi-walled carbon nanotubes, sodium pentachlorophenate, and their complex on earthworm Eisenia fetida. Ecotoxicology and Environmental Safety, 2014, 103, 29-35.	6.0	40
70	Nutrient removal and biogas upgrading by integrating fungal–microalgal cultivation with anaerobically digested swine wastewater treatment. Journal of Applied Phycology, 2017, 29, 2857-2866.	2.8	40
71	Synergistic Effect of Different Species in Stannic Chloride Solution on the Production of Levulinic Acid from Biomass. ACS Sustainable Chemistry and Engineering, 2019, 7, 5176-5183.	6.7	40
72	Algal biomass valorisation to high-value chemicals and bioproducts: Recent advances, opportunities and challenges. Bioresource Technology, 2022, 344, 126371.	9.6	40

#	Article	IF	CITATIONS
73	Selection of microalgae for simultaneous biogas upgrading and biogas slurry nutrient reduction under various photoperiods. Journal of Chemical Technology and Biotechnology, 2016, 91, 1982-1989.	3.2	39
74	Performance of mixed LED light wavelengths on nutrient removal and biogas upgrading by different microalgal-based treatment technologies. Energy, 2017, 130, 392-401.	8.8	39
75	Fractional pyrolysis of Cyanobacteria from water blooms over HZSM-5 for high quality bio-oil production. Journal of Energy Chemistry, 2014, 23, 732-741.	12.9	38
76	The chemical and dynamic distribution characteristics of iron, cobalt and nickel in three different anaerobic digestates: Effect of pH and trace elements dosage. Bioresource Technology, 2018, 269, 363-374.	9.6	38
77	Evaluation of the combined toxicity of multi-walled carbon nanotubes and sodium pentachlorophenate on the earthworm Eisenia fetida using avoidance bioassay and comet assay. Soil Biology and Biochemistry, 2014, 70, 123-130.	8.8	37
78	Direct ring C H bond activation to produce cresols from toluene and hydrogen peroxide catalyzed by framework titanium in TS-1. Journal of Catalysis, 2018, 366, 37-49.	6.2	37
79	Enantioselective synthesis of D-lactic acid via chemocatalysis using MgO: Experimental and molecular-based rationalization of the triose's reactivity and preliminary insights with raw biomass. Applied Catalysis B: Environmental, 2021, 292, 120145.	20.2	37
80	Adsorption of methylene blue on an agro-waste oiltea shell with and without fungal treatment. Scientific Reports, 2016, 6, 38450.	3.3	36
81	Effect of Tetrahydrofuran on the Solubilization and Depolymerization of Cellulose in a Biphasic System. ChemSusChem, 2018, 11, 397-405.	6.8	36
82	Removal of atrazine in catalytic degradation solutions by microalgae Chlorella sp. and evaluation of toxicity of degradation products via algal growth and photosynthetic activity. Ecotoxicology and Environmental Safety, 2021, 207, 111546 .	6.0	36
83	Performances of Several Solvents on the Cleavage of Inter―and Intramolecular Linkages of Lignin in Corncob Residue. ChemSusChem, 2018, 11, 1494-1504.	6.8	34
84	Temperature-tuned selectivity to alkanes or alcohol from ethyl palmitate deoxygenation over zirconia-supported cobalt catalyst. Fuel, 2020, 278, 118295.	6.4	34
85	Variation of rhizosphere microbial community in continuous mono-maize seed production. Scientific Reports, 2021, 11, 1544.	3.3	34
86	Variation of lipid and fatty acid compositions of the marine microalga Pavlova viridis (Prymnesiophyceae) under laboratory and outdoor culture conditions. World Journal of Microbiology and Biotechnology, 2008, 24, 1209-1214.	3.6	33
87	Production of \hat{I}^3 -valerolactone via selective catalytic conversion of hemicellulose in pubescens without addition of external hydrogen. Green Chemistry, 2016, 18, 848-857.	9.0	33
88	Structure characterization and pyrolysis behavior of organosolv lignin isolated from corncob residue. Journal of Analytical and Applied Pyrolysis, 2018, 136, 115-124.	5.5	33
89	Ecotoxicological effects of perfluorooctanoic acid on freshwater microalgae <i>Chlamydomonas reinhardtii</i> and <i>Scenedesmus obliquus</i> Environmental Toxicology and Chemistry, 2014, 33, 1129-1134.	4.3	32
90	Selective dissociation and conversion of hemicellulose in Phyllostachys heterocycla cv. var. pubescens to value-added monomers via solvent-thermal methods promoted by AlCl3. RSC Advances, 2014, 4, 24194-24206.	3.6	32

#	Article	IF	Citations
91	Characterization and utilization of industrial microbial waste as novel adsorbent to remove single and mixed dyes from water. Journal of Cleaner Production, 2019, 208, 552-562.	9.3	32
92	Advanced masking agent for leather tanning from stepwise degradation and oxidation of cellulose. Green Chemistry, 2021, 23, 4044-4050.	9.0	32
93	AlCl3 catalyzed conversion of hemicellulose in corn stover. Chinese Journal of Catalysis, 2013, 34, 2146-2152.	14.0	31
94	Screening of microalgae for integral biogas slurry nutrient removal and biogas upgrading by different microalgae cultivation technology. Scientific Reports, 2017, 7, 5426.	3.3	31
95	A †Trojan horse strategy' for the development of a renewable leather tanning agent produced <i>via</i> an AlCl ₃ -catalyzed cellulose depolymerization. Green Chemistry, 2020, 22, 316-321.	9.0	31
96	Selective degradation and oxidation of hemicellulose in corncob to oligosaccharides: From biomass into masking agent for sustainable leather tanning. Journal of Hazardous Materials, 2021, 413, 125425.	12.4	31
97	Research Progress and Reaction Mechanism of CO2 Methanation over Ni-Based Catalysts at Low Temperature: A Review. Catalysts, 2022, 12, 244.	3.5	31
98	Hydroxylation of Benzene by Activated Carbon Catalyst. Chinese Journal of Catalysis, 2012, 33, 1622-1630.	14.0	30
99	Steam reforming of CH4 at low temperature on Ni/ZrO2 catalyst: Effect of H2O/CH4 ratio on carbon deposition. International Journal of Hydrogen Energy, 2020, 45, 14281-14292.	7.1	30
100	Removal of pollutants from biogas slurry and CO2 capture in biogas by microalgae-based technology: a systematic review. Environmental Science and Pollution Research, 2020, 27, 28749-28767.	5.3	29
101	Sustainable production of lignin micro-/nano-particles (LMNPs) from biomass: Influence of the type of biomass on their self-assembly capability and physicochemical properties. Journal of Hazardous Materials, 2021, 403, 123701.	12.4	29
102	Effects of plants development and pollutant loading on performance of vertical subsurface flow constructed wetlands. International Journal of Environmental Science and Technology, 2011, 8, 177-186.	3.5	28
103	High yield and high concentration glucose production from corncob residues after tetrahydrofuran + H2O co-solvent pretreatment and followed by enzymatic hydrolysis. Renewable and Sustainable Energy Reviews, 2020, 132, 110107.	16.4	28
104	Ni–Fe Catalysts Supported on γ-Al ₂ O ₃ /HZSM-5 for Transformation of Palmitic Acid into Hydrocarbon Fuel. Industrial & Damp; Engineering Chemistry Research, 2020, 59, 17373-17386.	3.7	28
105	Unraveling enhanced activity and coke resistance of Pt-based catalyst in bio-aviation fuel refining. Applied Energy, 2021, 301, 117469.	10.1	28
106	Effects of influent C/N ratios and treatment technologies on integral biogas upgrading and pollutants removal from synthetic domestic sewage. Scientific Reports, 2017, 7, 10897.	3.3	27
107	Effects of carbon nanotubes on the toxicities of copper, cadmium and zinc toward the freshwater microalgae Scenedesmus obliquus. Aquatic Toxicology, 2020, 224, 105504.	4.0	27
108	Genotoxicity of organic pollutants in source of drinking water on microalga Euglena gracilis. Ecotoxicology, 2009, 18, 669-676.	2.4	26

#	Article	IF	Citations
109	A one-pot microwave-assisted NaCl–H2O/GVL solvent system for cellulose conversion to 5-hydroxymethylfurfural and saccharides with in situ separation of the products. Cellulose, 2019, 26, 8383-8400.	4.9	25
110	Highly Carbon-Resistant Y Doped NiO–ZrOm Catalysts for Dry Reforming of Methane. Catalysts, 2019, 9, 1055.	3.5	25
111	Catalytic Thermochemical Conversion of Algae and Upgrading of Algal Oil for the Production of High-Grade Liquid Fuel: A Review. Catalysts, 2020, 10, 145.	3.5	25
112	Bimetallic Ni and Mo Nitride as an Efficient Catalyst for Hydrodeoxygenation of Palmitic Acid. ACS Catalysis, 2022, 12, 4333-4343.	11.2	25
113	Toxicological effects of multi-walled carbon nanotubes adsorbed with nonylphenol on earthworm Eisenia fetida. Environmental Sciences: Processes and Impacts, 2013, 15, 2125.	3.5	24
114	Mechanistic Study of the Role of Primary Amines in Precursor Conversions to Semiconductor Nanocrystals at Low Temperature. Angewandte Chemie - International Edition, 2014, 53, 6898-6904.	13.8	24
115	The effect of NH3·H2O addition in Ni/SBA-15 catalyst preparation on its performance for carbon dioxide reforming of methane to produce H2. International Journal of Hydrogen Energy, 2018, 43, 13921-13930.	7.1	23
116	Distribution and Potential Ecological Risk of Heavy Metals in Water, Sediments, and Aquatic Macrophytes: A Case Study of the Junction of Four Rivers in Linyi City, China. International Journal of Environmental Research and Public Health, 2019, 16, 2861.	2.6	23
117	The Conversion of Jatropha Oil into Jet Fuel on NiMo/Alâ€MCMâ€41 Catalyst: Intrinsic Synergic Effects between Ni and Mo. Energy Technology, 2019, 7, 1800809.	3.8	23
118	On the development of chrome-free tanning agents: an advanced Trojan horse strategy using †Al†Zr-oligosaccharides†produced by the depolymerization and oxidation of biomass. Green Chemistry, 2021, 23, 2640-2651.	9.0	23
119	Protective effects of eicosapentaenoic acid on genotoxicity and oxidative stress of cyclophosphamide in mice. Environmental Toxicology, 2011, 26, 217-223.	4.0	22
120	Effects of \hat{I}^3 -Valerolactone/H ₂ O Solvent on the Degradation of <i>pubescens</i> for Its Fullest Utilization. Journal of Agricultural and Food Chemistry, 2018, 66, 6094-6103.	5.2	22
121	Identification and structural characterization of oligomers formed from the pyrolysis of biomass. Journal of Analytical and Applied Pyrolysis, 2019, 144, 104696.	5.5	22
122	Transformation of Jatropha Oil into High-Quality Biofuel over Ni–W Bimetallic Catalysts. ACS Omega, 2019, 4, 10580-10592.	3.5	22
123	Two-step hydrothermal conversion of Pubescens to obtain furans and phenol compounds separately. Bioresource Technology, 2010, 101, 8873-8880.	9.6	21
124	Aromatic Câ€"N bond formation via simultaneous activation of Câ€"H and Nâ€"H bonds: direct oxyamination of benzene to aniline. Green Chemistry, 2012, 14, 1880.	9.0	21
125	Direct amination of benzene to aniline by reactive distillation method over copper doped hierarchical TS-1 catalyst. Catalysis Science and Technology, 2014, 4, 639-647.	4.1	21
126	Effects of ZnO nanoparticles on the toxicity of cadmium to duckweed Lemna minor. Science of the Total Environment, 2019, 662, 697-702.	8.0	21

#	Article	IF	Citations
127	Mechanistic Study of the Asymmetric Carbonyl-Ene Reaction between Alkyl Enol Ethers and Isatin Catalyzed by the N,N′-Dioxide–Mg(OTf)2 Complex. Journal of Organic Chemistry, 2016, 81, 6444-6456.	3.2	20
128	One-step synthesis of highly active and stable Ni-ZrO2 catalysts for the conversion of methyl laurate to alkanes. Journal of Catalysis, 2022, 413, 297-310.	6.2	20
129	D-Excess-LaA Production Directly from Biomass by Trivalent Yttrium Species. IScience, 2019, 12, 132-140.	4.1	19
130	Treatment of methylene blue by mesoporous Fe/SiO2 prepared from rice husk pyrolytic residues. Catalysis Today, 2020, 355, 529-538.	4.4	19
131	One-pot chemo-catalytic conversion of glucose to methyl lactate over $\ln \hat{I}^3$ -Al2O3 catalyst. Catalysis Today, 2021, 365, 249-256.	4.4	19
132	Internalization of polystyrene microplastics in Euglena gracilis and its effects on the protozoan photosynthesis and motility. Aquatic Toxicology, 2021, 236, 105840.	4.0	19
133	The insights into the catalytic performance of rare earth metal ions on lactic acid formation from biomass via microwave heating. Chemical Engineering Journal, 2021, 421, 130014.	12.7	19
134	Efficient catalytic conversion of jatropha oil to high grade biofuel on Ni-Mo2C/MCM-41 catalysts with tuned surface properties. Journal of Energy Chemistry, 2021, 61, 425-435.	12.9	19
135	Low-Temperature Torrefaction of <i>Phyllostachys heterocycla cv. pubescens</i> : Effect of Two Torrefaction Procedures on the Composition of Bio-Oil Obtained. ACS Sustainable Chemistry and Engineering, 2017, 5, 4869-4878.	6.7	18
136	Nutrient and heavy metal removal from piggery wastewater and CH ₄ enrichment in biogas based on microalgae cultivation technology under different initial inoculum concentration. Water Environment Research, 2020, 92, 922-933.	2.7	18
137	Efficient Depolymerization of Cellulosic Paper Towel Waste Using Organic Carbonate Solvents. ACS Sustainable Chemistry and Engineering, 2020, 8, 13100-13110.	6.7	18
138	Reductive catalytic fractionation of lignin in birch sawdust to monophenolic compounds with high selectivity. Molecular Catalysis, 2020, 495, 111164.	2.0	18
139	Facile preparation of lignin nanoparticles from waste Camellia oleifera shell: The solvent effect on the structural characteristic of lignin nanoparticles. Industrial Crops and Products, 2022, 183, 114943.	5.2	18
140	Enhancing enzymatic hydrolysis efficiency of crop straws via tetrahydrofuran/water co-solvent pretreatment. Bioresource Technology, 2022, 358, 127428.	9.6	18
141	Fractional conversion of microalgae from water blooms. Faraday Discussions, 2017, 202, 197-212.	3.2	17
142	The effect of adsorbed oxygen species on carbon-resistance of Ni-Zr catalyst modified by Al and Mn for dry reforming of methane. Catalysis Today, 2022, 384-386, 257-264.	4.4	17
143	Dry reforming of methane over Ni–ZrOx catalysts doped by manganese: On the effect of the stability of the structure during time on stream. Applied Catalysis A: General, 2021, 617, 118120.	4.3	17
144	Theoretical Studies on the Asymmetric Baeyer–Villiger Oxidation Reaction of 4â€Phenylcyclohexanone with <i>m</i> àâ€Chloroperoxobenzoic Acid Catalyzed by Chiral Scandium(III)– <i>N</i> , <i>N</i> , <i>N</i>	3.3	16

#	Article	IF	Citations
145	The Roles of H2O/Tetrahydrofuran System in Lignocellulose Valorization. Frontiers in Chemistry, 2020, 8, 70.	3.6	16
146	Tailoring the yttrium content in Ni-Ce-Y/SBA-15 mesoporous silicas for CO2 methanation. Catalysis Today, 2021, 382, 104-119.	4.4	16
147	Effect of nickel salts on the production of biochar derived from alkali lignin: properties and applications. Bioresource Technology, 2021, 341, 125876.	9.6	16
148	Effect of Heating Rate on Yields and Distribution of Oil Products from the Pyrolysis of Pubescen. Energy Technology, 2018, 6, 366-378.	3.8	16
149	Roles of water and aluminum sulfate for selective dissolution and utilization of hemicellulose to develop sustainable corn stover-based biorefinery. Renewable and Sustainable Energy Reviews, 2020, 122, 109724.	16.4	16
150	Phytoremediation of the polluted Waigang River and general survey on variation of phytoplankton population. Environmental Science and Pollution Research, 2012, 19, 4168-4175.	5.3	15
151	The preparation of Fe/wood-based activated carbon catalyst for phenol hydroxylation from Fe ²⁺ and Fe ³⁺ precursors. Catalysis Science and Technology, 2015, 5, 2486-2495.	4.1	15
152	\hat{I}^3 -Valerolactone Production from Furfural Residue with Formic Acid as the Sole Hydrogen Resource via an Integrated Strategy on Au-Ni/ZrO ₂ . Industrial & Engineering Chemistry Research, 2020, 59, 17228-17238.	3.7	15
153	The effect of support on nickel phosphide catalysts for one-pot conversion of jatropha oil into high grade hydrocarbons. Catalysis Today, 2021, 367, 83-94.	4.4	15
154	Effect of the Interference Instant of Zeolite HY Catalyst on the Pyrolysis of Pubescens. Chinese Journal of Chemical Engineering, 2010, 18, 351-354.	3.5	14
155	Photolysis of gaseous butyl acetate using built-in microwave discharge electrodeless lamps. Journal of Hazardous Materials, 2011, 186, 430-435.	12.4	14
156	Selective Conversion of Hemicellulose in Macroalgae <i>Enteromorpha prolifera</i> to Rhamnose. ACS Omega, 2019, 4, 7023-7028.	3.5	14
157	Study of glucose isomerisation to fructose over three heterogeneous carbon-based aluminium-impregnated catalysts. Journal of Cleaner Production, 2020, 268, 122378.	9.3	14
158	Selective Hydrogenation of the Carbonyls in Furfural and 5-Hydroxymethylfurfural Catalyzed by PtNi Alloy Supported on SBA-15 in Aqueous Solution Under Mild Conditions. Frontiers in Chemistry, 2021, 9, 759512.	3.6	14
159	Tuning the selectivity of natural oils and fatty acids/esters deoxygenation to biofuels and fatty alcohols: A review. Green Energy and Environment, 2023, 8, 722-743.	8.7	14
160	Evaluation of Complex Toxicity of Canbon Nanotubes and Sodium Pentachlorophenol Based on Earthworm Coelomocytes Test. PLoS ONE, 2017, 12, e0170092.	2.5	13
161	Enhanced Removal of Methylene Blue from Aqueous Solution by Pummelo Peel Pretreated with Sodium Hydroxide. Journal of Health Science, 2009, 55, 619-624.	0.9	12
162	To distinguish the primary characteristics of agro-waste biomass by the principal component analysis: An investigation in East China. Waste Management, 2019, 90, 100-120.	7.4	12

#	Article	IF	CITATIONS
163	Enhanced pyrolysis of lignocellulosic biomass by room-temperature dilute sulfuric acid pretreatment. Journal of Analytical and Applied Pyrolysis, 2022, 166, 105588.	5 . 5	12
164	Mechanistic investigations on asymmetric N-H insertion of amines catalyzed by palladium-chiral guanidine complex. Journal of Catalysis, 2018, 364, 426-436.	6.2	11
165	The Promoting Effect of Ce on the Performance of Au/CexZr1â^xO2 for γ-Valerolactone Production from Biomass-Based Levulinic Acid and Formic Acid. Catalysts, 2018, 8, 241.	3 . 5	11
166	Cooperative Catalysis of Chiral Guanidine and Rh2(OAc)4 in Asymmetric Oâ€"H Insertion of Carboxylic Acid: A Theoretical Investigation. Journal of Organic Chemistry, 2019, 84, 15020-15031.	3.2	11
167	Effect of cobalt promotion on hydrotalcite-derived nickel catalyst for CO2 methanation. Applied Materials Today, 2021, 25, 101211.	4.3	11
168	Direct Amination of Toluene with Hydroxylamine in the Presence of Vanadium-based Catalysts. Chemistry Letters, 2005, 34, 406-407.	1.3	10
169	Mechanism and Origins of Stereoinduction in an Asymmetric Friedel–Crafts Alkylation Reaction of Chalcone Catalyzed by Chiral N,N′-Dioxide–Sc(III) Complex. Journal of Organic Chemistry, 2018, 83, 4628-4640.	3.2	10
170	Selective transformation of typical sugars to lactic acid catalyzed by dealuminated ZSM-5 supported erbium. Renewable Energy, 2022, 187, 551-560.	8.9	10
171	Low temperature catalytic hydrodeoxygenation of lignin-derived phenols to cyclohexanols over the Ru/SBA-15 catalyst. RSC Advances, 2022, 12, 9352-9362.	3.6	10
172	Molybdenum carbide as catalyst in biomass derivatives conversion. Journal of Energy Chemistry, 2022, 73, 68-87.	12.9	10
173	Production of Nitrogenâ€Containing Compounds via the Conversion of Natural Microalgae from Water Blooms Catalyzed by ZrO ₂ . ChemSusChem, 2021, 14, 3935-3944.	6.8	9
174	Nutrient and tetracycline removal from simulated biogas slurry and biogas upgrading by microalgae cultivation under different carbon nanotubes concentrations. Environmental Science and Pollution Research, 2022, 29, 8538-8548.	5. 3	9
175	Efficiency conversion of jatropha oil into high-quality biofuel over the innovative Ni-Mo2N based catalyst. Fuel, 2022, 324, 124548.	6.4	9
176	The preparation and properties of Cu doped TS-1 zeolite. RSC Advances, 2013, 3, 21628.	3.6	8
177	A Theoretical Investigation on the Strecker Reaction Catalyzed by a Ti ^{IV} â€Complex Catalyst Generated from a Cinchona Alkaloid, Achiral Substituted 2,2′â€Biphenol, and Tetraisopropyl Titanate. Chemistry - A European Journal, 2013, 19, 1637-1646.	3.3	8
178	Theoretical study on the mechanism and selectivity of asymmetric cycloaddition reactions of 3-vinylindole catalyzed by chiral N,N'-dioxide-Ni(II) complex. Catalysis Today, 2017, 298, 130-137.	4.4	8
179	Novel Preparation of Cu and Fe Zirconia Supported Catalysts for Selective Catalytic Reduction of NO with NH3. Catalysts, 2021, 11, 55.	3.5	8
180	Effect of Ni(NO3)2 Pretreatment on the Pyrolysis of Organsolv Lignin Derived from Corncob Residue. Processes, 2021, 9, 23.	2.8	8

#	Article	lF	Citations
181	The inhibition of p-hydroxyphenyl hydroxyl group in residual lignin on enzymatic hydrolysis of cellulose and its underlying mechanism. Bioresource Technology, 2022, 346, 126585.	9.6	8
182	Unraveling catalytic properties by yttrium promotion on mesoporous SBA-16 supported nickel catalysts towards CO2 methanation. Fuel, 2022, 317, 122829.	6.4	8
183	Comprehensive DFT Study of the Mechanism of Vanadium-Catalyzed Amination of Benzene with Hydroxylamine. Organometallics, 2011, 30, 5675-5686.	2.3	7
184	Theoretical and experimental studies on the structure–property relationship of chiral N,N′-dioxide–metal catalysts probed by the carbonyl–ene reaction of isatin. Catalysis Science and Technology, 2017, 7, 2183-2193.	4.1	7
185	Formation and in situ separation of oligomeric products from complete depolymerization of pubescens using a catalyst-free biphasic system. Cellulose, 2020, 27, 1951-1964.	4.9	7
186	Torrefaction at 200 °C of <i>Pubescens</i> Pretreated with AlCl ₃ Aqueous Solution at Room Temperature. ACS Omega, 2020, 5, 27709-27722.	3. 5	7
187	Conversion of polysaccharides in Ulva prolifera to valuable chemicals in the presence of formic acid. Journal of Applied Phycology, 2021, 33, 101-110.	2.8	7
188	Carbon resistance of xNi/HTASAO5 catalyst for the production of H2 via CO2 reforming of methane. International Journal of Hydrogen Energy, 2021, 46, 20835-20847.	7.1	7
189	Effect of MgCl2 solution pretreatment on pubescens conversion at room temperature. Renewable Energy, 2021, 171, 287-298.	8.9	7
190	Mechanism and Selectivity of Cyclopropanation of 3-Alkenyl-oxindoles with Sulfoxonium Ylides Catalyzed by a Chiral <i>N</i> , <i>N</i> ,ê≥-Dioxide–Mg(II) Complex. Journal of Organic Chemistry, 2021, 86, 11683-11697.	3.2	7
191	Effect of metal triflates on the microwave-assisted catalytic hydrogenolysis of birch wood lignin to monophenolic compounds. Industrial Crops and Products, 2021, 167, 113515.	5.2	7
192	Effects of polystyrene microplastics on copper toxicity to the protozoan Euglena gracilis: emphasis on different evaluation methods, photosynthesis, and metal accumulation. Environmental Science and Pollution Research, 2022, 29, 23461-23473.	5. 3	7
193	Theoretical Study on Heteroâ€Diels–Alder Reaction of Butadiene with Benzaldehyde Catalyzed by Chiral In ^{III} Complexes. European Journal of Organic Chemistry, 2010, 2010, 3867-3875.	2.4	6
194	Regioselective 1,4- over 1,2-addition of 3,3-bis(silyl) allyloxy lithium to enals, enones and enoates. The remarkable \hat{l} ±-effect of silicon. Organic and Biomolecular Chemistry, 2014, 12, 3021-3025.	2.8	6
195	Room temperature pretreatment of pubescens by AlCl3 aqueous solution. Journal of Energy Chemistry, 2019, 31, 138-147.	12.9	6
196	Comparative adsorption of remazol brilliant blue R and copper in aqueous solutions by carbon nanotubes with different levels of carboxyl group and specific surface area. Materials Research Express, 2019, 6, 1050e2.	1.6	6
197	Influence of three microalgalâ€based cultivation technologies on different domestic wastewater and biogas purification in photobioreactor. Water Environment Research, 2019, 91, 679-688.	2.7	6
198	Pyrolysis of High-Ash Natural Microalgae from Water Blooms: Effects of Acid Pretreatment. Toxins, 2021, 13, 542.	3.4	6

#	Article	IF	CITATIONS
199	Adsorption of remazol brilliant blue R by carboxylated multi-walled carbon nanotubes. , 0, 62, 282-289.		6
200	Chemical-switching strategy for the production of green biofuel on NiCo/MCM-41 catalysts by tuning atmosphere. Fuel, 2022, 315, 123118.	6.4	6
201	Theoretical investigation on donor–acceptor interaction between a carbonyl compound and an <i>N</i> , <i>N</i> ,6>0.00 complex. RSC Advances, 2017, 7, 56054-56061.	3.6	5
202	Theoretical Study on Asymmetric $[2+2]$ Cycloaddition of an Alkynone with a Cyclic Enol Silyl Ether Catalyzed by a Chiral $\langle i \rangle N \langle i \rangle, \langle i \rangle N \langle i \rangle $ (II) Complex. Organometallics, 2019, 38, 3111-3123.	2.3	5
203	Conversion of saccharides in enteromorpha prolifera to furfurals in the presence of FeCl3. Molecular Catalysis, 2020, 484, 110729.	2.0	5
204	Effects of MgCl2 Solution Pretreatment at Room Temperature on the Pyrolytic Behavior of Pubescens and the Properties of Bio-oil Obtained. Energy & Energy & 12665-12677.	5.1	5
205	The effect of sodium chloride concentration on the mutarotation and structure of d-xylose in water: Experimental and theoretical investigation. Carbohydrate Research, 2020, 489, 107941.	2.3	5
206	Study on the pyrolysis behaviour of the macroalga Ulva prolifera. Journal of Applied Phycology, 2021, 33, 91-99.	2.8	5
207	Syngas Production via CO2 Reforming of Methane over Aluminum-Promoted NiO–10Al2O3–ZrO2 Catalyst. ACS Omega, 2021, 6, 22383-22394.	3.5	5
208	The Effect of Si on CO2 Methanation over Ni-xSi/ZrO2 Catalysts at Low Temperature. Catalysts, 2021, 11, 67.	3.5	5
209	Boosting CO2 reforming of methane via the metal-support interaction in mesostructured SBA-16-derived Ni nanoparticles. Applied Materials Today, 2022, 26, 101354.	4.3	5
210	Cooperative roles of Sn(IV) and Cu(II) for efficient transformation of biomass-derived acetol towards lactic acid production. Science of the Total Environment, 2022, 833, 155044.	8.0	4
211	One step C–N bond formation from alkylbenzene and ammonia over Cu-modified TS-1 zeolite catalyst. Catalysis Science and Technology, 2014, 4, 3108-3119.	4.1	3
212	Mechanism study on asymmetric Michael addition reaction between alkynone and \hat{l}_{\pm} -angelica lactone catalyzed by chiral N, N'-dioxide-Sc(III) complex. Catalysis Today, 2020, 355, 635-644.	4.4	3
213	CeZrOx Promoted Water-Gas Shift Reaction under Steam–Methane Reforming Conditions on Ni-HTASO5. Catalysts, 2020, 10, 1110.	3.5	3
214	Asymmetric Cyanation of Activated Olefins with Ethyl Cyanoformate Catalyzed by Ti(IV)-Catalyst: A Theoretical Study. Catalysts, 2020, 10, 1079.	3. 5	2
215	Selectivity control in inverse electron demand Diels–Alder reaction of o-Quinone methides catalyzed by chiral N,N′-Dioxide–Sc(III) complex. Molecular Catalysis, 2020, 498, 111242.	2.0	2
216	Unexpected Formation of Organic Siloxanes alongside Ethylphenols in the Catalytic Hydrogenation of Waste Enzymatic Lignin. Advanced Energy and Sustainability Research, 2021, 2, 2100059.	5 . 8	2

#	Article	IF	Citations
217	Origin of enantioselectivity and product-distribution control in isocyanide-based multicomponent reaction catalysed by chiral N, N'-dioxide-Mg(II) complex. Molecular Catalysis, 2022, 524, 112277.	2.0	2
218	Theoretical Investigation on Direct Vinylogous Aldol Reaction of Isatin Catalyzed by Chiral- N , N'-dioxide Sc(III) Complex. Molecular Catalysis, 2018, 453, 22-30.	2.0	1
219	Guanidine–Amide-Catalyzed Aza-Henry Reaction of Isatin-Derived Ketimines: Origin of Selectivity and New Catalyst Design. Molecules, 2021, 26, 1965.	3.8	1
220	Metabolomics revealed the photosynthetic performance and metabolomic characteristics of Euglena gracilis under autotrophic and mixotrophic conditions. World Journal of Microbiology and Biotechnology, 2022, 38, .	3.6	1
221	Direct hydroxylation of 1,4â€Dichlorobenzene to 2,5â€Dichlorophenol over Activated Carbon Catalysts. ChemistrySelect, 2021, 6, 239-248.	1.5	0
222	Asymmetric $[2\hat{A}+\hat{A}2]$ cycloaddition of isatin with ketene catalyzed by N, N'-dioxide-Sc(III) complex: Mechanism and selectivity. Molecular Catalysis, 2021, 510, 111657.	2.0	0
223	The influence of solvent on the pyrolysis of organosolv lignins extracted from willow. Energy Conversion and Management: X, 2021, 13, 100139.	1.6	O