Hwangho Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12022655/publications.pdf

Version: 2024-02-01

840776 940533 16 426 11 16 citations h-index g-index papers 16 16 16 391 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effects of microporous TiO 2 support on the catalytic and structural properties of V 2 O 5 /microporous TiO 2 for the selective catalytic reduction of NO by NH 3 . Applied Catalysis B: Environmental, 2017, 210, 421-431.	20.2	78
2	Understanding the dynamic behavior of acid sites on TiO2-supported vanadia catalysts via operando DRIFTS under SCR-relevant conditions. Journal of Catalysis, 2020, 382, 269-279.	6.2	53
3	Simple physical mixing of zeolite prevents sulfur deactivation of vanadia catalysts for NOx removal. Nature Communications, 2021, 12, 901.	12.8	49
4	Controlling Catalytic Selectivity Mediated by Stabilization of Reactive Intermediates in Small-Pore Environments: A Study of Mn/TiO ₂ in the NH ₃ -SCR Reaction. ACS Catalysis, 2020, 10, 12017-12030.	11.2	40
5	Effect of pore structure of TiO 2 on the SO 2 poisoning over V 2 O 5 /TiO 2 catalysts for selective catalytic reduction of NO x with NH 3. Catalysis Today, 2018, 303, 19-24.	4.4	39
6	Mobility of Cu Ions in Cu-SSZ-13 Determines the Reactivity of Selective Catalytic Reduction of NO _{<i>x</i>} with NH ₃ . Journal of Physical Chemistry Letters, 2021, 12, 3210-3216.	4.6	33
7	Inter-particle migration of Cu ions in physically mixed Cu-SSZ-13 and H-SSZ-13 treated by hydrothermal aging. Reaction Chemistry and Engineering, 2019, 4, 1059-1066.	3.7	22
8	Time-resolved observation of V $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 5 $<$ /sub $>$ /TiO $<$ sub $>$ 2 $<$ /sub $>$ in NH $<$ sub $>$ 3 $<$ /sub $>$ -SCR reveals the equivalence of BrÃ,nsted and Lewis acid sites. Chemical Communications, 2020, 56, 15450-15453.	4.1	22
9	Enhanced SO2 resistance of V2O5/WO3-TiO2 catalyst physically mixed with alumina for the selective catalytic reduction of NOx with NH3. Chemical Engineering Journal, 2022, 433, 133836.	12.7	19
10	CeO2-TiO2 catalyst prepared by physical mixing for NH3 selective catalytic reduction: Evidence about the migration of sulfates from TiO2 to CeO2 via simple calcination. Korean Journal of Chemical Engineering, 2016, 33, 2547-2554.	2.7	14
11	Rotation-Assisted Hydrothermal Synthesis of Thermally Stable Multiwalled Titanate Nanotubes and Their Application to Selective Catalytic Reduction of NO with NH ₃ . ACS Applied Materials & amp; Interfaces, 2018, 10, 42249-42257.	8.0	14
12	<i>In situ</i> spectroscopic studies of the effect of water on the redox cycle of Cu ions in Cu-SSZ-13 during selective catalytic reduction of NO _{<i>x</i>} . Chemical Communications, 2022, 58, 6610-6613.	4.1	12
13	Control of the Cu ion species in Cu-SSZ-13 <i>via</i> the introduction of Co ²⁺ co-cations to improve the NH ₃ -SCR activity. Catalysis Science and Technology, 2021, 11, 4838-4848.	4.1	11
14	Tailoring the mechanochemical interaction between vanadium oxides and zeolite for sulfur-resistant DeNO catalysts. Applied Catalysis B: Environmental, 2022, 316, 121672.	20.2	9
15	Enhanced activity of vanadia supported on microporous titania for the selective catalytic reduction of NO with NH3: Effect of promoters. Chemosphere, 2021, 275, 130105.	8.2	7
16	Hydrothermal Synthesis of Titanate Nanotubes with Different Pore Structure and its Effect on the Catalytic Performance of V2O5-WO3/Titanate Nanotube Catalysts for NH3-SCR. Topics in Catalysis, 2019, 62, 214-218.	2.8	4