Charles H Wellman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1202261/publications.pdf

Version: 2024-02-01

64 papers 3,914 citations

218381 26 h-index 60 g-index

65 all docs

65 docs citations

65 times ranked 3166 citing authors

#	Article	IF	CITATIONS
1	The timescale of early land plant evolution. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2274-E2283.	3.3	654
2	Fragments of the earliest land plants. Nature, 2003, 425, 282-285.	13.7	525
3	The Interrelationships of Land Plants and the Nature of the Ancestral Embryophyte. Current Biology, 2018, 28, 733-745.e2.	1.8	398
4	A timeline for terrestrialization: consequences for the carbon cycle in the Palaeozoic. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 519-536.	1.8	227
5	Origin and Radiation of the Earliest Vascular Land Plants. Science, 2009, 324, 353-353.	6.0	224
6	The microfossil record of early land plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 717-732.	1.8	206
7	Earth's earliest non-marine eukaryotes. Nature, 2011, 473, 505-509.	13.7	153
8	The terrestrial biota prior to the origin of land plants (embryophytes): a review of the evidence. Palaeontology, 2015, 58, 601-627.	1.0	117
9	Spore assemblages from the Lower Devonian â€~Lower Old Red Sandstone' deposits of the Rhynie outlier, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences, 2006, 97, 167-211.	1.0	84
10	Mid-Devonian Archaeopteris Roots Signal Revolutionary Change in Earliest Fossil Forests. Current Biology, 2020, 30, 421-431.e2.	1.8	68
11	Permanent dyads in sporangia and spore masses from the Lower Devonian of the Welsh Borderland. Botanical Journal of the Linnean Society, 1998, 127, 117-147.	0.8	67
12	Investigating <scp>D</scp> evonian trees as geoâ€engineers of past climates: linking palaeosols to palaeobotany and experimental geobiology. Palaeontology, 2015, 58, 787-801.	1.0	66
13	2. Embryophytes on Land: The Ordovician to Lochkovian (Lower Devonian) Record., 2001,, 3-28.		65
14	The invasion of the land by plants: when and where?. New Phytologist, 2010, 188, 306-309.	3.5	64
15	Spores of the Rhynie chert plant Aglaophyton (Rhynia) major (Kidston and Lang) D.S. Edwards, 1986. Review of Palaeobotany and Palynology, 2006, 142, 229-250.	0.8	63
16	Tetrads in sporangia and spore masses from the Upper Silurian and Lower Devonian of the Welsh Borderland. Botanical Journal of the Linnean Society, 1999, 130, 111-156.	0.8	56
17	Early to Middle Devonian miospores from northern Saudi Arabia. Revue De Micropaleontologie, 2007, 50, 27-57.	0.8	49
18	Chapter 29 Palaeophytogeography of Ordovician–Silurian land plants. Geological Society Memoir, 2013, 38, 461-476.	0.9	44

#	Article	IF	CITATIONS
19	Palaeophytogeographical and palaeoecological implications of a miospore assemblage of earliest Devonian (Lochkovian) age from Saudi Arabia. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 250, 237-254.	1.0	39
20	"Phytodebris―from Scottish Silurian and Lower Devonian continental deposits. Review of Palaeobotany and Palynology, 1995, 84, 255-279.	0.8	36
21	Palaeoecology and palaeophytogeography of the Rhynie chert plants: evidence from integrated analysis of in situ and dispersed spores. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 985-992.	1.2	35
22	Palaeoecology of a billionâ€yearâ€old nonâ€marine cyanobacterium from the Torridon Group and Nonesuch Formation. Palaeontology, 2016, 59, 89-108.	1.0	34
23	Spore assemblages from Upper Ordovician and lowermost Silurian sediments recovered from the Qusaiba-1 shallow core hole, Qasim region, central Saudi Arabia. Review of Palaeobotany and Palynology, 2015, 212, 111-126.	0.8	33
24	Reproductive Organs and In Situ Spores of <i>Asteroxylon mackiei</i> Kidston & Eamp; Lang, the Most Complex Plant from the Lower Devonian Rhynie Chert. International Journal of Plant Sciences, 2013, 174, 293-308.	0.6	32
25	A Lower Devonian sporomorph assemblage from the Midland Valley of Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1993, 84, 117-136.	1.0	30
26	Discussion on â€Tectonic and environmental controls on Palaeozoic fluvial environments: reassessing the impacts of early land plants on sedimentation' <i>Journal of the Geological Society London </i> , https://doi.org/10.1144/jgs2016-063. Journal of the Geological Society, 2017, 174, 947-950.	0.9	30
27	Origin, function and development of the spore wall in early land plants. , 2004, , 43-63.		28
28	Morphology and Wall Ultrastructure in Devonian Spores with Bifurcateâ€Tipped Processes. International Journal of Plant Sciences, 2002, 163, 451-474.	0.6	27
29	A quantitative comparison of dispersed spore/pollen and plant megafossil assemblages from a Middle Jurassic plant bed from Yorkshire, UK. Paleobiology, 2015, 41, 640-660.	1.3	25
30	Devonian spores from an intra-oceanic volcanic arc, West Junggar (Xinjiang, China) and the palaeogeographical significance of the associated fossil plant beds. Review of Palaeobotany and Palynology, 2014, 206, 10-22.	0.8	23
31	Resistance of Filamentous Chlorophycean, Ulvophycean, and Xanthophycean Algae to Acetolysis: Testing Proterozoic and Paleozoic Microfossil Attributions. International Journal of Plant Sciences, 2013, 174, 947-957.	0.6	22
32	Episodic river flooding events revealed by palynological assemblages in Jurassic deposits of the Brent Group, North Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485, 389-400.	1.0	21
33	Spore assemblages from the Lower Devonian Xujiachong Formation from Qujing, Yunnan, China. Palaeontology, 2012, 55, 583-611.	1.0	20
34	Palaeoecology and palaeophytogeography of the Rhynie chert plants: further evidence from integrated analysis of in situ and dispersed spores. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20160491.	1.8	20
35	The Devonian landscape factory: plant–sediment interactions in the Old Red Sandstone of Svalbard and the rise of vegetation as a biogeomorphic agent. Journal of the Geological Society, 2021, 178, .	0.9	20
36	Cryptospores from the Katian (Upper Ordovician) of the Tungus basin: The first evidence for early land plants from the Siberian paleocontinent. Review of Palaeobotany and Palynology, 2016, 224, 4-13.	0.8	18

#	Article	IF	CITATIONS
37	The nature and evolutionary relationships of the earliest land plants. New Phytologist, 2014, 202, 1-3.	3.5	17
38	Palaeogeographic and palaeoclimatic considerations based on Ordovician to Lochkovian vegetation. Geological Society Special Publication, 2010, 339, 49-58.	0.8	16
39	Wall ultrastructure in three species of the dispersed spore Emphanisporites from the Early Devonian. Review of Palaeobotany and Palynology, 2011, 163, 264-280.	0.8	16
40	Spores of the Rhynie chert plant <i>Horneophyton lignieri</i> (Kidston & Lang) Barghoorn & Darrah, 1938. Transactions of the Royal Society of Edinburgh: Earth Sciences, 2003, 94, 429-443.	1.0	15
41	ULTRASTRUCTURE OF DISPERSED AND <i>IN SITU </i> SPECIMENS OF THE DEVONIAN SPORE <i>RHABDOSPORITES LANGII </i> EVIDENCE FOR THE EVOLUTIONARY RELATIONSHIPS OF PROGYMNOSPERMS. Palaeontology, 2009, 52, 139-167.	1.0	15
42	Middle Jurassic vegetation dynamics based on quantitative analysis of spore/pollen assemblages from the Ravenscar Group, North Yorkshire, <scp>UK</scp> . Palaeontology, 2016, 59, 305-328.	1.0	15
43	Reply to Hedges et al.: Accurate timetrees do indeed require accurate calibrations. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9512-E9513.	3.3	15
44	Middle Ordovician acritarchs and problematic organic-walled microfossils from the Saq-Hanadir transitional beds in the QSIM-801 well, Saudi Arabia. Revue De Micropaleontologie, 2017, 60, 289-318.	0.8	14
45	Early Terrestrialization: Transition from Algal to Bryophyte Grade. Advances in Photosynthesis and Respiration, 2014, , 9-28.	1.0	13
46	Morphology and wall ultrastructure of a new and highly distinctive megaspore from the Middle Jurassic of Yorkshire, UK. Review of Palaeobotany and Palynology, 2015, 216, 33-43.	0.8	12
47	Early land plant phytodebris. Geological Society Special Publication, 2021, 511, 309-320.	0.8	12
48	The Nonesuch Formation Lagerst \tilde{A} $\overline{\mathbf{x}}$ \mathbf{t} : a rare window into freshwater life one billion years ago. Journal of the Geological Society, 2021, 178, .	0.9	12
49	Low tropical diversity during the adaptive radiation of early land plants. Nature Plants, 2022, 8, 104-109.	4.7	12
50	Palynology of the Middle Ordovician Hawaz Formation in the Murzuq Basin, south-west Libya. Palynology, 2017, 41, 31-56.	0.7	11
51	Filamentous green algae from the Early Devonian Rhynie chert. Palaontologische Zeitschrift, 2019, 93, 387-393.	0.8	11
52	Pellicle ultrastructure demonstrates that <i>Moyeria</i> is a fossil euglenid. Palynology, 2020, 44, 461-471.	0.7	10
53	Colonial palynomorphs from the Upper Ordovician of north-eastern Iran:  thalli', coenobial Chlorophyceae (Hydrodictyaceae) or cyanobacteria?. Palynology, 2020, 44, 575-585.	0.7	10
54	A possible billion-year-old holozoan with differentiated multicellularity. Current Biology, 2021, 31, 2658-2665.e2.	1.8	9

#	Article	IF	CITATIONS
55	Middle Ordovician cryptospores from the Saq-Hanadir transitional beds in the QSIM-801 well, Saudi Arabia. Revue De Micropaleontologie, 2017, 60, 319-331.	0.8	8
56	Dinosaur-plant interactions within a Middle Jurassic ecosystem—palynology of the Burniston Bay dinosaur footprint locality, Yorkshire, UK. Palaeobiodiversity and Palaeoenvironments, 2018, 98, 139-151.	0.6	8
57	Spore assemblages from the Lower Devonian â€~Lower Old Red Sandstone' deposits of the Northern Highlands of Scotland: the Berriedale Outlier. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2014, 105, 227-238.	0.3	6
58	A key for the identification of cryptospores. Palynology, 2018, 42, 492-503.	0.7	6
59	An endemic flora of dispersed spores from the Middle Devonian of Iberia. Papers in Palaeontology, 2019, 5, 415-459.	0.7	6
60	Palaeontology: The Rhynie Chert Is the Gift that Keeps on Giving. Current Biology, 2019, 29, R93-R95.	1.8	6
61	Morphology and wall ultrastructure of the megaspore Lagenicula (Triletes) mixta (Winslow 1962) comb. nov. from the Carboniferous (Early Mississippian: mid Tournaisian) of Ohio, USA. Review of Palaeobotany and Palynology, 2009, 156, 51-61.	0.8	5
62	Studies of spore/pollen wall ultrastructure in fossil and living plants: A review of the subject area and the contribution of Bernard Lugardon. Review of Palaeobotany and Palynology, 2009, 156, 2-6.	0.8	5
63	Permanent dyads in sporangia and spore masses from the Lower Devonian of the Welsh Borderland. Botanical Journal of the Linnean Society, 1998, 127, 117-147.	0.8	5
64	Spore assemblages from the Lower Devonian â€~Lower Old Red Sandstone' deposits of Arran, Scotland. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2009, 100, 391-397.	0.3	1