Mihaela Pop

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12022188/publications.pdf

Version: 2024-02-01

430874 477307 44 844 18 29 citations h-index g-index papers 45 45 45 1234 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Optical mapping of Langendorff-perfused human hearts: establishing a model for the study of ventricular fibrillation in humans. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H875-H880.	3.2	109
2	Quantitative tracking of edema, hemorrhage, and microvascular obstruction in subacute myocardial infarction in a porcine model by MRI. Magnetic Resonance in Medicine, 2011, 66, 1129-1141.	3.0	91
3	Quantification of fibrosis in infarcted swine hearts by <i>ex vivo </i> late gadolinium-enhancement and diffusion-weighted MRI methods. Physics in Medicine and Biology, 2013, 58, 5009-5028.	3.0	86
4	Changes in dielectric properties at 460 kHz of kidney and fat during heating: importance for radio-frequency thermal therapy. Physics in Medicine and Biology, 2003, 48, 2509-2525.	3.0	74
5	Realâ€time MRI guidance of cardiac interventions. Journal of Magnetic Resonance Imaging, 2017, 46, 935-950.	3.4	63
6	Quantitative magnetic resonance imaging can distinguish remodeling mechanisms after acute myocardial infarction based on the severity of ischemic insult. Magnetic Resonance in Medicine, 2013, 70, 1095-1105.	3.0	34
7	Fusion of optical imaging and MRI for the evaluation and adjustment of macroscopic models of cardiac electrophysiology: A feasibility study. Medical Image Analysis, 2009, 13, 370-380.	11.6	30
8	Correspondence Between Simple 3-D MRI-Based Computer Models and In-Vivo EP Measurements in Swine With Chronic Infarctions. IEEE Transactions on Biomedical Engineering, 2011, 58, 3483-3486.	4.2	30
9	Personalization of a Cardiac Electrophysiology Model Using Optical Mapping and MRI for Prediction of Changes With Pacing. IEEE Transactions on Biomedical Engineering, 2011, 58, 3339-3349.	4.2	28
10	Cardiovascular magnetic resonance guided ablation and intra-procedural visualization of evolving radiofrequency lesions in the left ventricle. Journal of Cardiovascular Magnetic Resonance, 2018, 20, 20.	3.3	28
11	Construction of 3D MR image-based computer models of pathologic hearts, augmented with histology and optical fluorescence imaging to characterize action potential propagation. Medical Image Analysis, 2012, 16, 505-523.	11.6	26
12	Distribution of abnormal potentials in chronic myocardial infarction using a real time magnetic resonance guided electrophysiology system. Journal of Cardiovascular Magnetic Resonance, 2015, 17, 27.	3.3	25
13	Polarimetric assessment of healthy and radiofrequency ablated porcine myocardial tissue. Journal of Biophotonics, 2016, 9, 750-759.	2.3	25
14	Hemorrhage promotes inflammation and myocardial damage following acute myocardial infarction: insights from a novel preclinical model and cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 50.	3.3	23
15	Polarization image segmentation of radiofrequency ablated porcine myocardial tissue. PLoS ONE, 2017, 12, e0175173.	2.5	23
16	Myocardial BOLD imaging at 3 T using quantitative $\langle i \rangle T \langle i \rangle \langle sub \rangle 2 \langle sub \rangle$: Application in a myocardial infarct model. Magnetic Resonance in Medicine, 2011, 66, 1739-1747.	3.0	22
17	High-Resolution 3-D T\$ $\{f_1^{*}\}$ -Mapping and Quantitative Image Analysis of <i>GRAY ZONE</i> in Chronic Fibrosis. IEEE Transactions on Biomedical Engineering, 2014, 61, 2930-2938.	4.2	20
18	Characterization of the ultrashort-TE (UTE) MR collagen signal. NMR in Biomedicine, 2015, 28, 1236-1244.	2.8	18

#	Article	IF	Citations
19	COMPARISON OF OPTICAL POLARIMETRY AND DIFFUSION TENSOR MR IMAGING FOR ASSESSING MYOCARDIAL ANISOTROPY. Journal of Innovative Optical Health Sciences, 2010, 03, 109-121.	1.0	17
20	Multicontrast reconstruction using compressed sensing with low rank and spatially varying edge-preserving constraints for high-resolution MR characterization of myocardial infarction. Magnetic Resonance in Medicine, 2017, 78, 598-610.	3.0	11
21	Postinfarction Ventricular Tachycardia Substrate Characterization: A Comparison Between Late Enhancement Magnetic Resonance Imaging and Voltage Mapping Using an MR-Guided Electrophysiology System. IEEE Transactions on Biomedical Engineering, 2013, 60, 2442-2449.	4.2	10
22	Assessment of the longitudinal changes in infarct heterogeneity post myocardial infarction. BMC Cardiovascular Disorders, 2016, 16, 198.	1.7	9
23	Novel atlas of fiber directions built from ex-vivo diffusion tensor images of porcine hearts. Computer Methods and Programs in Biomedicine, 2020, 187, 105200.	4.7	9
24	Optical method using fluence or radiance measurements to monitor thermal therapy. Review of Scientific Instruments, 2003, 74, 393-395.	1.3	5
25	Accelerated multicontrast volumetric imaging with isotropic resolution for improved periâ€infarct characterization using parallel imaging, lowâ€rank and spatially varying edgeâ€preserving sparse modeling. Magnetic Resonance in Medicine, 2018, 79, 3018-3031.	3.0	4
26	Feasibility Study of Respiratory Motion Modeling Based Correction for MRI-Guided Intracardiac Interventional Procedures. IEEE Transactions on Biomedical Engineering, 2015, 62, 2899-2910.	4.2	3
27	Analysis of Activation-Recovery Intervals from Intra-cardiac Electrograms in a Pre-clinical Chronic Model of Myocardial Infarction. Lecture Notes in Computer Science, 2017, , 280-288.	1.3	3
28	MRI-Guided Cardiac RF Ablation for Comparing MRI Characteristics of Acute Lesions and Associated Electrophysiologic Voltage Reductions. IEEE Transactions on Biomedical Engineering, 2022, 69, 2657-2666.	4.2	3
29	Adjustment of Parameters in Ionic Models Using Optimal Control Problems. Lecture Notes in Computer Science, 2017, , 322-332.	1.3	2
30	In vivo Contact EP Data and ex vivo MR-Based Computer Models: Registration and Model-Dependent Errors. Lecture Notes in Computer Science, 2013, , 364-374.	1.3	2
31	Multiâ€contrast volumetric imaging with isotropic resolution for assessing infarct heterogeneity: Initial clinical experience. NMR in Biomedicine, 2020, 33, e4253.	2.8	1
32	Novel Framework to Integrate Real-Time MR-Guided EP Data with T1 Mapping-Based Computational Heart Models. Lecture Notes in Computer Science, 2017, , 11-20.	1.3	1
33	In Vivo Parametric T1 Maps Correlate with Structural and Molecular Characteristics of Focal Fibrosis. Lecture Notes in Computer Science, 2017, , 13-22.	1.3	1
34	Constructing an average geometry and diffusion tensor magnetic resonance field from freshly explanted porcine hearts. , 2019, , .		1
35	EP Challenge - STACOM'11: Forward Approaches to Computational Electrophysiology Using MRI-Based Models and In-Vivo CARTO Mapping in Swine Hearts. Lecture Notes in Computer Science, 2012, , 1-13.	1.3	1
36	A Pre-clinical Framework to Characterize Peri-infarct Remodelling Using in vivo T1 Maps and CARTO Data. Lecture Notes in Computer Science, 2013, , 326-335.	1.3	1

#	Article	IF	CITATIONS
37	Progress on Customization of Predictive MRI-Based Macroscopic Models from Experimental Data. Lecture Notes in Computer Science, 2014, , 152-161.	1.3	1
38	Pipeline to Build and Test Robust 3D T1 Mapping-Based Heart Models for EP Interventions: Preliminary Results. Lecture Notes in Computer Science, 2019, , 64-72.	1.3	1
39	Diffusion Magnetic Resonance Imaging with Applications to Cardiac Muscle: Short Review. Annals of West University of Timisoara: Physics, 2020, 62, 108-119.	0.2	1
40	Co-registered Cardiac ex vivo DT Images and Histological Images forÂFibrosisÂQuantification. Lecture Notes in Computer Science, 2020, , 3-11.	1.3	1
41	Quantitative magnetic resonance imaging can distinguish remodeling mechanisms after acute myocardial infarction based on the severity of ischemic insult. Magnetic Resonance in Medicine, 2013, 70, spcone.	3.0	O
42	Automatic Detection of Landmarks for Fast Cardiac MR Image Registration. Lecture Notes in Computer Science, 2021, , 87-96.	1.3	0
43	A Numerical Method for the Optimal Adjustment of Parameters in Ionic Models Accounting for Restitution Properties. Lecture Notes in Computer Science, 2019, , 46-54.	1.3	0
44	Medical image alignment based on landmark- and approximate contour-matching. Journal of Medical lmaging, 2021, 8, 064003.	1.5	0