Devika B Chithrani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/120212/publications.pdf

Version: 2024-02-01

53 papers 8,825 citations

236925 25 h-index 254184 43 g-index

53 all docs

53 docs citations

53 times ranked

12521 citing authors

#	Article	IF	CITATIONS
1	Nanotechnology Driven Cancer Chemoradiation: Exploiting the Full Potential of Radiotherapy with a Unique Combination of Gold Nanoparticles and Bleomycin. Pharmaceutics, 2022, 14, 233.	4.5	6
2	Combining Gold Nanoparticles with Other Radiosensitizing Agents for Unlocking the Full Potential of Cancer Radiotherapy. Pharmaceutics, 2021, 13, 442.	4.5	18
3	Three-Dimensional Tumor Spheroids as a Tool for Reliable Investigation of Combined Gold Nanoparticle and Docetaxel Treatment. Cancers, 2021, 13, 1465.	3.7	14
4	Investigation of Nano-Bio Interactions within a Pancreatic Tumor Microenvironment for the Advancement of Nanomedicine in Cancer Treatment. Current Oncology, 2021, 28, 1962-1979.	2.2	9
5	Docetaxel-Mediated Uptake and Retention of Gold Nanoparticles in Tumor Cells and in Cancer-Associated Fibroblasts. Cancers, 2021, 13, 3157.	3.7	12
6	Modulation of nanoparticle uptake, intracellular distribution, and retention with docetaxel to enhance radiotherapy. British Journal of Radiology, 2020, 93, 20190742.	2.2	24
7	Gold nanoparticle mediated radiation response among key cell components of the tumour microenvironment for the advancement of cancer nanotechnology. Scientific Reports, 2020, 10, 12096.	3.3	33
8	Elucidating the fate of nanoparticles among key cell components of the tumor microenvironment for promoting cancer nanotechnology. Cancer Nanotechnology, 2020, 11, 8.	3.7	27
9	Advances in Gold Nanoparticle-Based Combined Cancer Therapy. Nanomaterials, 2020, 10, 1671.	4.1	60
10	Modulation of the Microtubule Network for Optimization of Nanoparticle Dynamics for the Advancement of Cancer Nanomedicine. Bioengineering, 2020, 7, 56.	3 . 5	8
11	Modulation of gold nanoparticle mediated radiation dose enhancement through synchronization of breast tumor cell population. British Journal of Radiology, 2019, 92, 20190283.	2.2	13
12	Use of a lipid nanoparticle system as a Trojan horse in delivery of gold nanoparticles to human breast cancer cells for improved outcomes in radiation therapy. Cancer Nanotechnology, 2019, 10, .	3.7	21
13	Optimization of uptake and transport of gold nanoparticles in two-dimensional and three-dimensional in-vitro cell models. , 2019, , .		2
14	Intracellular Targeting Using Surface-Modified Gold Nanoparticles. , 2018, , 315-333.		0
15	Determining the Radiation Enhancement Effects of Gold Nanoparticles in Cells in a Combined Treatment with Cisplatin and Radiation at Therapeutic Megavoltage Energies. Cancers, 2018, 10, 150.	3.7	33
16	Gold nanoparticle mediated combined cancer therapy. Cancer Nanotechnology, 2018, 9, .	3.7	34
17	Peptide Mediated In Vivo Tumor Targeting of Nanoparticles through Optimization in Single and Multilayer In Vitro Cell Models. Cancers, 2018, 10, 84.	3.7	27
18	Intracellular Behavior of Nanoparticles Based on their Physicochemical Properties., 2018, , 1101-1127.		0

#	Article	lF	Citations
19	Cancer nanomedicine: gold nanoparticle mediated combined cancer therapy. , 2018, , .		O
20	Colloidal Gold-Mediated Delivery of Bleomycin for Improved Outcome in Chemotherapy. Nanomaterials, 2016, 6, 48.	4.1	25
21	Therapeutic Enhancement with Nuclear Targeted Gold Nanoparticles. Biophysical Journal, 2016, 110, 502a.	0.5	1
22	Size dependent gold nanoparticle interaction at nano-micro interface using both monolayer and multilayer (tissue-like) cell models. , $2016, \ldots$		0
23	Size-Dependent Gold Nanoparticle Interaction at Nano–Micro Interface Using Both Monolayer and Multilayer (Tissue-Like) Cell Models. Nano-Micro Letters, 2016, 8, 44-53.	27.0	36
24	Roadmap to Clinical Use of Gold Nanoparticles for Radiation Sensitization. International Journal of Radiation Oncology Biology Physics, 2016, 94, 189-205.	0.8	182
25	Elucidating the Uptake and Distribution of Nanoparticles in Solid Tumors via a Multilayered Cell Culture Model. Nano-Micro Letters, 2015, 7, 127-137.	27.0	18
26	Integration of Peptides for Enhanced Uptake of PEGylayed Gold Nanoparticles. Journal of Nanoscience and Nanotechnology, 2015, 15, 2125-2131.	0.9	45
27	Uptake of Gold Nanoparticles in Breathless (Hypoxic) Cancer Cells. Journal of Biomedical Nanotechnology, 2015, 11, 1162-1172.	1.1	12
28	Nuclear Targeting of Gold Nanoparticles for Improved Therapeutics. Current Topics in Medicinal Chemistry, 2015, 16, 271-280.	2.1	24
29	Intracellular Behavior of Nanoparticles Based on their Physicochemical Properties. Advances in Chemical and Materials Engineering Book Series, 2015, , 10-35.	0.3	1
30	Increase in uptake of peptide modified gold nanoparticles (GNPs). , 2014, , .		0
31	Cancer Nanotechnology: Enhanced Therapeutic Response Using Peptide-Modified Gold Nanoparticles. Journal of Nanoscience and Nanotechnology, 2014, 14, 4813-4819.	0.9	28
32	Applications of Nanoparticles in Nanomedicine. Journal of Biomedical Nanotechnology, 2014, 10, 2371-2392.	1.1	83
33	Peptide-modified gold nanoparticles for improved cancer therapeutics. Proceedings of SPIE, 2014, , .	0.8	0
34	Determining the Size Dependence of Colloidal Gold Nanoparticle Uptake in a Tumor-like Interface (Hypoxic). Colloids and Interface Science Communications, 2014, 1, 57-61.	4.1	16
35	Peptide modified gold nanoparticles for improved cellular uptake, nuclear transport, and intracellular retention. Nanoscale, 2014, 6, 12026-12033.	5. 6	120
36	Optimized bio-nano interface using peptide modified colloidal gold nanoparticles. Colloids and Interface Science Communications, 2014, 1, 54-56.	4.1	3

#	Article	lF	Citations
37	Gold Nanoparticle Modification for Nuclear Targeting. Biophysical Journal, 2014, 106, 216a.	0.5	O
38	Polyethylene Glycol Functionalized Nanoparticles for Improved Cancer Treatment. Reviews in Nanoscience and Nanotechnology, 2014, 3, 20-30.	0.4	36
39	Polyethylene Glycol Density and Length Affects Nanoparticle Uptake by Cancer Cells. Journal of Nanomedicine Research, 2014, 1, .	1.8	29
40	Monte Carlo simulation on low-energy electrons from gold nanoparticle in radiotherapy. Journal of Physics: Conference Series, 2012, 341, 012012.	0.4	20
41	Gold Nanostructures as a Platform for Combinational Therapy in Future Cancer Therapeutics. Cancers, 2011, 3, 1081-1110.	3.7	126
42	Irradiation of gold nanoparticles by xâ€rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production. Medical Physics, 2011, 38, 624-631.	3.0	215
43	Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier. Nanomedicine: Nanotechnology, Biology, and Medicine, 2010, 6, 161-169.	3.3	152
44	Nanoparticles for Improved Therapeutics and Imaging in Cancer Therapy. Recent Patents on Nanotechnology, 2010, 4, 171-180.	1.3	46
45	Gold Nanoparticles as Radiation Sensitizers in Cancer Therapy. Radiation Research, 2010, 173, 719.	1.5	547
46	Intracellular uptake, transport, and processing of gold nanostructures. Molecular Membrane Biology, 2010, 27, 299-311.	2.0	177
47	Delivery of smaller gold nanoparticles by liposomal incorporation. , 2010, , .		1
48	Intracellular uptake, transport, and processing of nanostructures in cancer cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2009, 5, 118-127.	3.3	140
49	Elucidating the Mechanism of Cellular Uptake and Removal of Protein-Coated Gold Nanoparticles of Different Sizes and Shapes. Nano Letters, 2007, 7, 1542-1550.	9.1	2,001
50	Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells. Nano Letters, 2006, 6, 662-668.	9.1	4,242
51	Optical spectroscopy of single, site-selected, InAs/InP self-assembled quantum dots. Applied Physics Letters, 2004, 84, 978-980.	3.3	87
52	Self-assembled InAs quantum dots on InP nano-templates. Journal of Crystal Growth, 2002, 234, 391-398.	1.5	47
53	Optimization of Bio-Nano Interface Using Gold Nanostructures as a Model Nanoparticle System. Insciences Journal, 0, , 115-135.	0.7	24