
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1202079/publications.pdf Version: 2024-02-01

OVE HOECH-GUIDBERC

#	Article	IF	CITATIONS
1	Coral composition and bottom-wave metrics improve understanding of the patchiness of cyclone damage on reefs. Science of the Total Environment, 2022, 804, 150178.	3.9	4
2	Thylakoid fatty acid composition and response to short-term cold and heat stress in high-latitude Symbiodiniaceae. Coral Reefs, 2022, 41, 343-353.	0.9	3
3	Hidden in the deep: Distinct benthic trajectories call for monitoring of mesophotic reefs. Conservation Letters, 2022, 15, .	2.8	3
4	The Condition of Four Coral Reefs in Timor-Leste before and after the 2016–2017 Marine Heatwave. Oceans, 2022, 3, 147-173.	0.6	1
5	Biogeochemical niches and trophic plasticity of shallow and mesophotic corals recovering from mass bleaching. Limnology and Oceanography, 2022, 67, 1617-1630.	1.6	7
6	Coral-macroalgal competition under ocean warming and acidification. Journal of Experimental Marine Biology and Ecology, 2021, 534, 151477.	0.7	9
7	Habitatâ€specific biogenic production and erosion influences net framework and sediment coral reef carbonate budgets. Limnology and Oceanography, 2021, 66, 349-365.	1.6	18
8	Biogeochemical variability and trophic status of reef water column following a coral bleaching event. Coral Reefs, 2021, 40, 1-7.	0.9	9
9	Benthic and coral reef community field data for Heron Reef, Southern Great Barrier Reef, Australia, 2002–2018. Scientific Data, 2021, 8, 84.	2.4	9
10	Fine-scale time series surveys reveal new insights into spatio-temporal trends in coral cover (2002–2018), of a coral reef on the Southern Great Barrier Reef. Coral Reefs, 2021, 40, 1055-1067.	0.9	11
11	Designing a blueprint for coral reef survival. Biological Conservation, 2021, 257, 109107.	1.9	82
12	The benefits of heterogeneity in spatial prioritisation within coral reef environments. Biological Conservation, 2021, 258, 109155.	1.9	16
13	Morphological stasis masks ecologically divergent coral species on tropical reefs. Current Biology, 2021, 31, 2286-2298.e8.	1.8	39
14	Asymmetric physiological response of a reef-building coral to pulsed versus continuous addition of inorganic nutrients. Scientific Reports, 2021, 11, 13165.	1.6	4
15	Global forest restoration opportunities to foster coral reef conservation. Global Change Biology, 2021, 27, 5238-5252.	4.2	18
16	Estimating the global risk of anthropogenic climate change. Nature Climate Change, 2021, 11, 879-885.	8.1	65
17	Linking isotopic signatures of nitrogen in nearshore coral skeletons with sources in catchment runoff. Marine Pollution Bulletin, 2021, 173, 113054.	2.3	4
18	Identifying management opportunities to combat climate, land, and marine threats across less climate exposed coral reefs. Conservation Biology, 2021, , .	2.4	3

#	Article	IF	CITATIONS
19	Coral Reef Community Changes in Karimunjawa National Park, Indonesia: Assessing the Efficacy of Management in the Face of Local and Global Stressors. Journal of Marine Science and Engineering, 2020, 8, 760.	1.2	26
20	Ocean warming and acidification uncouple calcification from calcifier biomass which accelerates coral reef decline. Communications Earth & Environment, 2020, 1, .	2.6	29
21	A contemporary baseline record of the world's coral reefs. Scientific Data, 2020, 7, 355.	2.4	6
22	The World Coral Conservatory (WCC): A Noah's ark for corals to support survival of reef ecosystems. PLoS Biology, 2020, 18, e3000823.	2.6	20
23	Science, Diplomacy, and the Red Sea's Unique Coral Reef: It's Time for Action. Frontiers in Marine Science, 2020, 7, .	1.2	34
24	Forecasting intensifying disturbance effects on coral reefs. Global Change Biology, 2020, 26, 2785-2797.	4.2	46
25	Paradise lost: Endâ€ofâ€century warming and acidification under businessâ€asâ€usual emissions have severe consequences for symbiotic corals. Global Change Biology, 2020, 26, 2203-2219.	4.2	36
26	Seasonal shifts in the competitive ability of macroalgae influence the outcomes of coral–algal competition. Royal Society Open Science, 2020, 7, 201797.	1.1	7
27	Monitoring of Coral Reefs Using Artificial Intelligence: A Feasible and Cost-Effective Approach. Remote Sensing, 2020, 12, 489.	1.8	77
28	The Great Barrier Reef: Vulnerabilities and solutions in the face of ocean acidification. Regional Studies in Marine Science, 2019, 31, 100729.	0.4	13
29	Evaluating coral trophic strategies using fatty acid composition and indices. PLoS ONE, 2019, 14, e0222327.	1.1	24
30	The human imperative of stabilizing global climate change at 1.5°C. Science, 2019, 365, .	6.0	498
31	Ecological changes over 90 years at Low Isles on the Great Barrier Reef. Nature Communications, 2019, 10, 4409.	5.8	24
32	The ocean is key to achieving climate and societal goals. Science, 2019, 365, 1372-1374.	6.0	60
33	Living coral tissue slows skeletal dissolution related to ocean acidification. Nature Ecology and Evolution, 2019, 3, 1438-1444.	3.4	36
34	A genomic view of the reef-building coral Porites lutea and its microbial symbionts. Nature Microbiology, 2019, 4, 2090-2100.	5.9	160
35	Photosynthesis by symbiotic sponges enhances their ability to erode calcium carbonate. Journal of Experimental Marine Biology and Ecology, 2019, 516, 140-149.	0.7	13
36	People and the changing nature of coral reefs. Regional Studies in Marine Science, 2019, 30, 100699.	0.4	73

#	Article	IF	CITATIONS
37	Disrupting data sharing for a healthier ocean. ICES Journal of Marine Science, 2019, 76, 1415-1423.	1.2	21
38	Commentary: Reconstructing Four Centuries of Temperature-Induced Coral Bleaching on the Great Barrier Reef. Frontiers in Marine Science, 2019, 6, .	1.2	6
39	Upwelling as the major source of nitrogen for shallow and deep reefâ€building corals across an oceanic atoll system. Functional Ecology, 2019, 33, 1120-1134.	1.7	40
40	Climate change drives trait-shifts in coral reef communities. Scientific Reports, 2019, 9, 3721.	1.6	38
41	Temporal effects of ocean warming and acidification on coral–algal competition. Coral Reefs, 2019, 38, 297-309.	0.9	20
42	A governing framework for international ocean acidification policy. Marine Policy, 2019, 102, 10-20.	1.5	15
43	Single-cell visualization indicates direct role of sponge host in uptake of dissolved organic matter. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20192153.	1.2	30
44	The future of resilience-based management in coral reef ecosystems. Journal of Environmental Management, 2019, 233, 291-301.	3.8	143
45	Single-cell measurement of ammonium and bicarbonate uptake within a photosymbiotic bioeroding sponge. ISME Journal, 2018, 12, 1308-1318.	4.4	22
46	Bleaching and mortality of a photosymbiotic bioeroding sponge under future carbon dioxide emission scenarios. Oecologia, 2018, 187, 25-35.	0.9	11
47	Securing a Long-term Future for Coral Reefs. Trends in Ecology and Evolution, 2018, 33, 936-944.	4.2	130
48	Deep reefs of the Great Barrier Reef offer limited thermal refuge during mass coral bleaching. Nature Communications, 2018, 9, 3447.	5.8	94
49	Riskâ€sensitive planning for conserving coral reefs under rapid climate change. Conservation Letters, 2018, 11, e12587.	2.8	151
50	The Dynamics of Coral-Algal Interactions in Space and Time on the Southern Great Barrier Reef. Frontiers in Marine Science, 2018, 5, .	1.2	43
51	Remote Sensing of Coral Bleaching Using Temperature and Light: Progress towards an Operational Algorithm. Remote Sensing, 2018, 10, 18.	1.8	54
52	The many possible climates from the Paris Agreement's aim of 1.5 °C warming. Nature, 2018, 558, 41-49.	13.7	116
53	Microbiome variation in corals with distinct depth distribution ranges across a shallow–mesophotic gradient (15–85Âm). Coral Reefs, 2017, 36, 447-452.	0.9	34
54	Deep reefs are not universal refuges: Reseeding potential varies among coral species. Science Advances, 2017, 3, e1602373.	4.7	193

#	Article	IF	CITATIONS
55	<i>Symbiodinium</i> (Dinophyceae) community patterns in invertebrate hosts from inshore marginal reefs of the southern Great Barrier Reef, Australia. Journal of Phycology, 2017, 53, 589-600.	1.0	7
56	Symbiotic plasticity of Symbiodinium in a common excavating sponge. Marine Biology, 2017, 164, 1.	0.7	16
57	Key functional role of the optical properties of coral skeletons in coral ecology and evolution. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20161667.	1.2	102
58	An evaluation of semiâ€automated methods for collecting ecosystemâ€level data in temperate marine systems. Ecology and Evolution, 2017, 7, 4640-4650.	0.8	13
59	Human activities influence benthic community structure and the composition of the coral-algal interactions in the central Maldives. Journal of Experimental Marine Biology and Ecology, 2017, 497, 33-40.	0.7	45
60	Linking fishes to multiple metrics of coral reef structural complexity using three-dimensional technology. Scientific Reports, 2017, 7, 13965.	1.6	48
61	Comparison of two photographic methodologies for collecting and analyzing the condition of coral reef ecosystems. Ecosphere, 2017, 8, e01971.	1.0	7
62	Sponge bioerosion on changing reefs: ocean warming poses physiological constraints to the success of a photosymbiotic excavating sponge. Scientific Reports, 2017, 7, 10705.	1.6	40
63	Studying interactions between excavating sponges and massive corals by the use of hybrid cores. Marine Ecology, 2017, 38, e12393.	0.4	9
64	Photoacclimatory and photoprotective responses to cold versus heat stress in high latitude reef corals. Journal of Phycology, 2017, 53, 308-321.	1.0	12
65	Winners and losers as mangrove, coral and seagrass ecosystems respond to sea-level rise in Solomon Islands. Environmental Research Letters, 2017, 12, 094009.	2.2	42
66	Coral Reef Ecosystems under Climate Change and Ocean Acidification. Frontiers in Marine Science, 2017, 4, .	1.2	479
67	Editorial: The Effect of Climate Change across Ocean Regions. Frontiers in Marine Science, 2017, 4, .	1.2	19
68	Lower Mesophotic Coral Communities (60-125 m Depth) of the Northern Great Barrier Reef and Coral Sea. PLoS ONE, 2017, 12, e0170336.	1.1	34
69	Multiple Stressors and Ecological Complexity Require a New Approach to Coral Reef Research. Frontiers in Marine Science, 2016, 3, .	1.2	49
70	Responses of Marine Organisms to Climate Change across Oceans. Frontiers in Marine Science, 2016, 3,	1.2	624
71	Scaling up Ecological Measurements of Coral Reefs Using Semi-Automated Field Image Collection and Analysis. Remote Sensing, 2016, 8, 30.	1.8	59
72	Understanding constraints to the transformation rate of global energy infrastructure. Wiley Interdisciplinary Reviews: Energy and Environment, 2016, 5, 33-48.	1.9	10

#	Article	IF	CITATIONS
73	Implications of the Paris agreement for the ocean. Nature Climate Change, 2016, 6, 732-735.	8.1	50
74	Day–night ecophysiology of the photosymbiotic bioeroding sponge Cliona orientalis Thiele, 1900. Marine Biology, 2016, 163, 1.	0.7	18
75	Reconciling Development and Conservation under Coastal Squeeze from Rising Sea Level. Conservation Letters, 2016, 9, 361-368.	2.8	43
76	Ocean acidification: Linking science to management solutions using the Great Barrier Reef as a case study. Journal of Environmental Management, 2016, 182, 641-650.	3.8	22
77	<i>Symbiodinium</i> biogeography tracks environmental patterns rather than host genetics in a key Caribbean reef-builder, <i>Orbicella annularis</i> . Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161938.	1.2	25
78	Coral symbioses under prolonged environmental change: living near tolerance range limits. Scientific Reports, 2016, 6, 36271.	1.6	45
79	Prevalent endosymbiont zonation shapes the depth distributions of scleractinian coral species. Royal Society Open Science, 2015, 2, 140297.	1.1	81
80	Deep down on a Caribbean reef: lower mesophotic depths harbor a specialized coral-endosymbiont community. Scientific Reports, 2015, 5, 7652.	1.6	116
81	The ReFuGe 2020 Consortium—using "omics―approaches to explore the adaptability and resilience of coral holobionts to environmental change. Frontiers in Marine Science, 2015, 2, .	1.2	24
82	Six Month In Situ High-Resolution Carbonate Chemistry and Temperature Study on a Coral Reef Flat Reveals Asynchronous pH and Temperature Anomalies. PLoS ONE, 2015, 10, e0127648.	1.1	64
83	Transcriptomic characterization of the enzymatic antioxidants FeSOD, MnSOD, APX and KatG in the dinoflagellate genus Symbiodinium. BMC Evolutionary Biology, 2015, 15, 48.	3.2	50
84	Habitat-specific environmental conditions primarily control the microbiomes of the coral <i>Seriatopora hystrix</i> . ISME Journal, 2015, 9, 1916-1927.	4.4	172
85	Contrasting futures for ocean and society from different anthropogenic CO ₂ emissions scenarios. Science, 2015, 349, aac4722.	6.0	1,059
86	The moral of the coral. New Scientist, 2015, 226, 25.	0.0	0
87	The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME Journal, 2015, 9, 2261-2274.	4.4	548
88	pH homeostasis during coral calcification in a free ocean CO ₂ enrichment (FOCE) experiment, Heron Island reef flat, Great Barrier Reef. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13219-13224.	3.3	63
89	Differential coral bleaching—Contrasting the activity and response of enzymatic antioxidants in symbiotic partners under thermal stress. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2015, 190, 15-25.	0.8	110
90	Unfolding the secrets of coral–algal symbiosis. ISME Journal, 2015, 9, 844-856.	4.4	100

#	Article	IF	CITATIONS
91	Porites white patch syndrome: associated viruses and disease physiology. Coral Reefs, 2015, 34, 249-257.	0.9	35
92	Deepest zooxanthellate corals of the Great Barrier Reef and Coral Sea. Marine Biodiversity, 2015, 45, 1-2.	0.3	32
93	Transcriptomic Changes in Coral Holobionts Provide Insights into Physiological Challenges of Future Climate and Ocean Change. PLoS ONE, 2015, 10, e0139223.	1.1	74
94	Signaling cascades and the importance of moonlight in coral broadcast mass spawning. ELife, 2015, 4, .	2.8	94
95	Early transcriptional changes in the reef-building coral Acropora aspera in response to thermal and nutrient stress. BMC Genomics, 2014, 15, 1052.	1.2	67
96	Maps, laws and planning policy: Working with biophysical and spatial uncertainty in the case of sea level rise. Environmental Science and Policy, 2014, 44, 247-257.	2.4	23
97	Effects of ocean warming and acidification on the energy budget of an excavating sponge. Global Change Biology, 2014, 20, 1043-1054.	4.2	55
98	Coral reefs in the Anthropocene: persistence or the end of the line?. Geological Society Special Publication, 2014, 395, 167-183.	0.8	24
99	Ensuring survival: Oceans, climate and security. Ocean and Coastal Management, 2014, 90, 27-37.	2.0	22
100	Coral reef sustainability through adaptation: glimmer of hope or persistent mirage?. Current Opinion in Environmental Sustainability, 2014, 7, 127-133.	3.1	65
101	<i><scp>S</scp>ymbiodinium</i> (<scp>D</scp> inophyceae) diversity in reefâ€invertebrates along an offshore to inshore reef gradient near <scp>L</scp> izard <scp>I</scp> sland, <scp>G</scp> reat <scp>B</scp> arrier <scp>R</scp> eef. Journal of Phycology, 2014, 50, 552-563.	1.0	29
102	Geographical limits to species-range shifts are suggested by climate velocity. Nature, 2014, 507, 492-495.	13.7	436
103	Implications of geometric plasticity for maximizing photosynthesis in branching corals. Marine Biology, 2014, 161, 313-328.	0.7	22
104	Antioxidant plasticity and thermal sensitivity in four types of <i><scp>S</scp>ymbiodinium</i> sp Journal of Phycology, 2014, 50, 1035-1047.	1.0	87
105	Transforming management of tropical coastal seas to cope with challenges of the 21st century. Marine Pollution Bulletin, 2014, 85, 8-23.	2.3	118
106	Interdependency of tropical marine ecosystems in response to climate change. Nature Climate Change, 2014, 4, 724-729.	8.1	75
107	The Catlin Seaview Survey – kilometreâ€scale seascape assessment, and monitoring of coral reef ecosystems. Aquatic Conservation: Marine and Freshwater Ecosystems, 2014, 24, 184-198.	0.9	66
108	Transcriptome Analysis of the Scleractinian Coral Stylophora pistillata. PLoS ONE, 2014, 9, e88615.	1.1	49

#	Article	IF	CITATIONS
109	Summary for Policymakers. , 2014, , 45-64.		1
110	SymbioGBR: a web-based database of Symbiodinium associated with cnidarian hosts on the Great Barrier Reef. BMC Ecology, 2013, 13, 7.	3.0	56
111	Sponge biomass and bioerosion rates increase under ocean warming and acidification. Global Change Biology, 2013, 19, 3581-3591.	4.2	113
112	Cyclone damage at mesophotic depths on Myrmidon Reef (GBR). Coral Reefs, 2013, 32, 935-935.	0.9	43
113	Methods to quantify components of the excavating sponge <i><scp>C</scp>liona orientalis </i> <scp>T</scp> hiele, 1900. Marine Ecology, 2013, 34, 193-206.	0.4	22
114	Sharing the slope: depth partitioning of agariciid corals and associated Symbiodinium across shallow and mesophotic habitats (2-60Âm) on a Caribbean reef. BMC Evolutionary Biology, 2013, 13, 205.	3.2	94
115	Light from down under. Journal of Experimental Biology, 2013, 216, 4341-6.	0.8	7
116	Mixed responses of tropical Pacific fisheries and aquaculture to climate change. Nature Climate Change, 2013, 3, 591-599.	8.1	251
117	Limiting global warming to 2 °C is unlikely to save most coral reefs. Nature Climate Change, 2013, 3, 165-170.	8.1	410
118	Future reef decalcification under a business-as-usual CO ₂ emission scenario. Proceedings of the United States of America, 2013, 110, 15342-15347.	3.3	152
119	High natural gene expression variation in the reef-building coral Acropora millepora: potential for acclimative and adaptive plasticity. BMC Genomics, 2013, 14, 228.	1.2	51
120	Newâ€old hemoglobinâ€like proteins of symbiotic dinoflagellates. Ecology and Evolution, 2013, 3, 822-834.	0.8	12
121	Increased Cell Proliferation and Mucocyte Density in the Sea Anemone Aiptasia pallida Recovering from Bleaching. PLoS ONE, 2013, 8, e65015.	1.1	16
122	Assessing "Dangerous Climate Change― Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature. PLoS ONE, 2013, 8, e81648.	1.1	448
123	Host-Specific Interactions with Environmental Factors Shape the Distribution of Symbiodinium across the Great Barrier Reef. PLoS ONE, 2013, 8, e68533.	1.1	57
124	Climate change and marine life. Biology Letters, 2012, 8, 907-909.	1.0	60
125	A single-cell view of ammonium assimilation in coral–dinoflagellate symbiosis. ISME Journal, 2012, 6, 1314-1324.	4.4	230
126	A short-term in situ CO2 enrichment experiment on Heron Island (GBR). Scientific Reports, 2012, 2, 413.	1.6	104

#	Article	IF	CITATIONS
127	Climate variability of the Great Barrier Reef in relation to the tropical Pacific and El Niño-Southern Oscillation. Marine and Freshwater Research, 2012, 63, 34.	0.7	20
128	Coral Reefs, Climate Change, and Mass Extinction. , 2012, , 261-283.		5
129	Resistance to thermal stress in corals without changes in symbiont composition. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1100-1107.	1.2	132
130	The need for new ocean conservation strategies in a high-carbon dioxide world. Nature Climate Change, 2012, 2, 720-724.	8.1	89
131	Australian politicians' beliefs about climate change: political partisanship and political ideology. Environmental Politics, 2012, 21, 712-733.	3.4	163
132	Thermal priming affects symbiont photosynthesis but does not alter bleaching susceptibility in Acropora millepora. Journal of Experimental Marine Biology and Ecology, 2012, 432-433, 64-72.	0.7	29
133	Thermal Stress Promotes Host Mitochondrial Degradation in Symbiotic Cnidarians: Are the Batteries of the Reef Going to Run Out?. PLoS ONE, 2012, 7, e39024.	1.1	84
134	Major Cellular and Physiological Impacts of Ocean Acidification on a Reef Building Coral. PLoS ONE, 2012, 7, e34659.	1.1	262
135	Mushroom corals overcome live burial through pulsed inflation. Coral Reefs, 2012, 31, 399-399.	0.9	40
136	Taxonomy and species boundaries in the coral genus Favia Milne Edwards and Haime, 1857 (Cnidaria:) Tj ETQqO	0 0 rgBT /	Overlock 101 12
137	INTERACTIONS BETWEEN OCEAN ACIDIFICATION AND WARMING ON THE MORTALITY AND DISSOLUTION OF CORALLINE ALGAE ¹ . Journal of Phycology, 2012, 48, 32-39.	1.0	166
138	Ocean acidification reduces coral recruitment by disrupting intimate larvalâ€algal settlement interactions. Ecology Letters, 2012, 15, 338-346.	3.0	185
139	Coral Thermal Tolerance: Tuning Gene Expression to Resist Thermal Stress. PLoS ONE, 2012, 7, e50685.	1.1	140
140	The adaptation of coral reefs to climate change: Is the Red Queen being outpaced?. Scientia Marina, 2012, 76, 403-408.	0.3	28
141	Agree and ignore: the looming crisis for coral reef ecosystems. , 2012, , 99-106.		0
142	Complex Diel Cycles of Gene Expression in Coral-Algal Symbiosis. Science, 2011, 331, 175-175.	6.0	112
143	Regulation of Apoptotic Mediators Reveals Dynamic Responses to Thermal Stress in the Reef Building Coral Acropora millepora. PLoS ONE, 2011, 6, e16095.	1.1	85
144	Present Limits to Heat-Adaptability in Corals and Population-Level Responses to Climate Extremes. PLoS ONE, 2011, 6, e24802.	1.1	140

#	Article	IF	CITATIONS
145	The Ecology of â€~Acroporid White Syndrome', a Coral Disease from the Southern Great Barrier Reef. PLoS ONE, 2011, 6, e26829.	1.1	32
146	Ocean acidification and warming will lower coral reef resilience. Global Change Biology, 2011, 17, 1798-1808.	4.2	277
147	IMPORTANCE OF MACRO- VERSUS MICROSTRUCTURE IN MODULATING LIGHT LEVELS INSIDE CORAL COLONIES1. Journal of Phycology, 2011, 47, 846-860.	1.0	57
148	Fine-scale patterns of species and phylogenetic turnover in a global biodiversity hotspot: Implications for climate change vulnerability. Journal of Vegetation Science, 2011, 22, 766-780.	1.1	22
149	Coral reef ecosystems and anthropogenic climate change. Regional Environmental Change, 2011, 11, 215-227.	1.4	202
150	Validation of Housekeeping Genes for Gene Expression Studies in Symbiodinium Exposed to Thermal and Light Stress. Marine Biotechnology, 2011, 13, 355-365.	1.1	75
151	Mesophotic coral ecosystems on the walls of Coral Sea atolls. Coral Reefs, 2011, 30, 335-335.	0.9	32
152	Gene expression profiles of cytosolic heat shock proteins Hsp70 and Hsp90 from symbiotic dinoflagellates in response to thermal stress: possible implications for coral bleaching. Cell Stress and Chaperones, 2011, 16, 69-80.	1.2	152
153	Adaptive divergence in a scleractinian coral: physiological adaptation of Seriatopora hystrix to shallow and deep reef habitats. BMC Evolutionary Biology, 2011, 11, 303.	3.2	93
154	Difficult but not impossible. Nature Climate Change, 2011, 1, 72-72.	8.1	18
155	The Future of Coral Reefs. Science, 2011, 334, 1494-1495.	6.0	30
156	Revisiting climate thresholds and ecosystem collapse. Frontiers in Ecology and the Environment, 2011, 9, 94-96.	1.9	24
157	Climate change impedes scleractinian corals as primary reef ecosystem engineers. Marine and Freshwater Research, 2011, 62, 205.	0.7	210
158	The Impact of Climate Change on Coral Reef Ecosystems. , 2011, , 391-403.		41
159	Shared Skeletal Support in a Coral-Hydroid Symbiosis. PLoS ONE, 2011, 6, e20946.	1.1	16
160	Symbiodinium diversity in mesophotic coral communities on the Great Barrier Reef: a first assessment. Marine Ecology - Progress Series, 2011, 439, 117-126.	0.9	53
161	A comparative study of methods for surface area and threeâ€dimensional shape measurement of coral skeletons. Limnology and Oceanography: Methods, 2010, 8, 241-253.	1.0	60
162	The relative contribution of dinoflagellate photosynthesis and stored lipids to the survivorship of symbiotic larvae of the reef-building corals. Marine Biology, 2010, 157, 1215-1224.	0.7	86

#	Article	IF	CITATIONS
163	Broadcast spawning patterns of Favia species on the inshore reefs of Thailand. Coral Reefs, 2010, 29, 227-234.	0.9	18
164	The impact of benthic algae on the settlement of a reef-building coral. Coral Reefs, 2010, 29, 203-208.	0.9	112
165	Assessing the â€ ⁻ deep reef refugia' hypothesis: focus on Caribbean reefs. Coral Reefs, 2010, 29, 309-327.	0.9	485
166	The Capricorn Eddy: a prominent driver of the ecology and future of the southern Great Barrier Reef. Coral Reefs, 2010, 29, 975-985.	0.9	52
167	Increasing the accuracy of surface area estimation using single wax dipping of coral fragments. Coral Reefs, 2010, 29, 893-897.	0.9	126
168	Presence of Symbiodinium spp. in macroalgal microhabitats from the southern Great Barrier Reef. Coral Reefs, 2010, 29, 1049-1060.	0.9	28
169	A method for extracting a high-quality RNA from Symbiodinium sp Journal of Applied Phycology, 2010, 22, 139-146.	1.5	30
170	Making a Model Meaningful to Coral Reef Managers in a Developing Nation: a Case Study of Overfishing and Rock Anchoring in Indonesia. Conservation Biology, 2010, 24, 1316-1326.	2.4	12
171	Stramenopile Microorganisms Associated with the Massive Coral <i>Favia</i> sp Journal of Eukaryotic Microbiology, 2010, 57, 236-244.	0.8	32
172	Longâ€standing environmental conditions, geographic isolation and host–symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus <i>Symbiodinium</i> . Journal of Biogeography, 2010, 37, 785-800.	1.4	342
173	Dangerous shifts in ocean ecosystem function?. ISME Journal, 2010, 4, 1090-1092.	4.4	11
174	Shallow-water wave lensing in coral reefs: a physical and biological case study. Journal of Experimental Biology, 2010, 213, 4304-4312.	0.8	28
175	Differential Regulation by Heat Stress of Novel Cytochrome P450 Genes from the Dinoflagellate Symbionts of Reef-Building Corals. Applied and Environmental Microbiology, 2010, 76, 2823-2829.	1.4	55
176	Heating rate and symbiont productivity are key factors determining thermal stress in the reef-building coral <i>Acropora formosa</i> . Journal of Experimental Biology, 2010, 213, 1026-1034.	0.8	68
177	The Impact of Climate Change on the World's Marine Ecosystems. Science, 2010, 328, 1523-1528.	6.0	2,244
178	Analysis of evolutionarily conserved innate immune components in coral links immunity and symbiosis. Developmental and Comparative Immunology, 2010, 34, 1219-1229.	1.0	111
179	Paleo-perspectives on ocean acidification. Trends in Ecology and Evolution, 2010, 25, 332-344.	4.2	157
180	The coral proto - free ocean carbon enrichment system (CP-FOCE): Engineering and development. , 2010, , .		11

#	Article	IF	CITATIONS
181	Bacterial Communities of Two Ubiquitous Great Barrier Reef Corals Reveals Both Site- and Species-Specificity of Common Bacterial Associates. PLoS ONE, 2010, 5, e10401.	1.1	110
182	Genetic Divergence across Habitats in the Widespread Coral Seriatopora hystrix and Its Associated Symbiodinium. PLoS ONE, 2010, 5, e10871.	1.1	159
183	Acute tissue death (white syndrome) affects the microenvironment of tabular Acropora corals. Aquatic Biology, 2010, 10, 99-104.	0.5	6
184	Coral Skeletons Defend against Ultraviolet Radiation. PLoS ONE, 2009, 4, e7995.	1.1	40
185	Photoreactivation is the main repair pathway for UV-induced DNA damage in coral planulae. Journal of Experimental Biology, 2009, 212, 2760-2766.	0.8	33
186	Phototropic growth in a reef flat acroporid branching coral species. Journal of Experimental Biology, 2009, 212, 662-667.	0.8	18
187	The coral reef crisis: The critical importance of<350ppm CO2. Marine Pollution Bulletin, 2009, 58, 1428-1436.	2.3	367
188	Response of two species of Indo-Pacific corals, Porites cylindrica and Stylophora pistillata, to short-term thermal stress: The host does matter in determining the tolerance of corals to bleaching. Journal of Experimental Marine Biology and Ecology, 2009, 373, 102-110.	0.7	216
189	Climate change and coral reefs: Trojan horse or false prophecy?. Coral Reefs, 2009, 28, 569-575.	0.9	36
190	Stability of coral–endosymbiont associations during and after a thermal stress event in the southern Great Barrier Reef. Coral Reefs, 2009, 28, 709-713.	0.9	114
191	Effect of colony size and surrounding substrate on corals experiencing a mild bleaching event on Heron Island reef flat (southern Great Barrier Reef, Australia). Coral Reefs, 2009, 28, 999-1003.	0.9	18
192	Early molecular responses of coral larvae to hyperthermal stress. Molecular Ecology, 2009, 18, 5101-5114.	2.0	183
193	The big ecological questions inhibiting effective environmental management in Australia. Austral Ecology, 2009, 34, 1-9.	0.7	66
194	Biodiversity, climate change, and ecosystem services. Current Opinion in Environmental Sustainability, 2009, 1, 46-54.	3.1	337
195	Assisted migration: part of an integrated conservation strategy. Trends in Ecology and Evolution, 2009, 24, 473-474.	4.2	64
196	Dominant threats and collaborative solutions in the world's largest ocean: The Pacific. IOP Conference Series: Earth and Environmental Science, 2009, 6, 352015.	0.2	0
197	Coral reefs and rapid climate change: Impacts, risks and implications for tropical societies. IOP Conference Series: Earth and Environmental Science, 2009, 6, 302004.	0.2	4
198	Doom and Boom on a Resilient Reef: Climate Change, Algal Overgrowth and Coral Recovery. PLoS ONE, 2009, 4, e5239.	1.1	262

#	Article	IF	CITATIONS
199	Bacterial communities closely associated with coral tissues vary under experimental and natural reef conditions and thermal stress. Aquatic Biology, 2009, 4, 289-296.	0.5	84
200	Variation in colony geometry modulates internal light levels in branching corals, AcroporaÂhumilis and StylophoraÂpistillata. Marine Biology, 2008, 155, 649-660.	0.7	54
201	Biogeochemical responses following coral mass spawning on the Great Barrier Reef: pelagic–benthic coupling. Coral Reefs, 2008, 27, 123-132.	0.9	46
202	Acquisition of symbiotic dinoflagellates (Symbiodinium) by juveniles of the coral Acropora longicyathus. Coral Reefs, 2008, 27, 219-226.	0.9	64
203	Coral disease physiology: the impact of Acroporid white syndrome on Symbiodinium. Coral Reefs, 2008, 27, 373-377.	0.9	23
204	Cellular processes of bleaching in the Mediterranean coral Oculina patagonica. Coral Reefs, 2008, 27, 593-597.	0.9	20
205	Symbiont acquisition strategy drives host–symbiont associations in the southern Great Barrier Reef. Coral Reefs, 2008, 27, 763-772.	0.9	81
206	Linkages between coral assemblages and coral proxies of terrestrial exposure along a cross-shelf gradient on the southern Great Barrier Reef. Coral Reefs, 2008, 27, 887-903.	0.9	76
207	Bacteria are not the primary cause of bleaching in the Mediterranean coral <i>Oculina patagonica</i> . ISME Journal, 2008, 2, 67-73.	4.4	68
208	A photosynthetic alveolate closely related to apicomplexan parasites. Nature, 2008, 451, 959-963.	13.7	437
209	SPATIAL HETEROGENEITY OF PHOTOSYNTHETIC ACTIVITY WITHIN DISEASED CORALS FROM THE GREAT BARRIER REEF ¹ . Journal of Phycology, 2008, 44, 526-538.	1.0	19
210	Imaging the fluorescence of marine invertebrates and their associated flora. Journal of Microscopy, 2008, 232, 197-199.	0.8	8
211	Host pigments: potential facilitators of photosynthesis in coral symbioses. Plant, Cell and Environment, 2008, 31, 1523-1533.	2.8	61
212	Early cellular changes are indicators of pre-bleaching thermal stress in the coral host. Journal of Experimental Marine Biology and Ecology, 2008, 364, 63-71.	0.7	108
213	Ocean acidification causes bleaching and productivity loss in coral reef builders. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17442-17446.	3.3	1,026
214	Coral Adaptation in the Face of Climate Change. Science, 2008, 320, 315-316.	6.0	37
215	Cell biology in model systems as the key to understanding corals. Trends in Ecology and Evolution, 2008, 23, 369-376.	4.2	293
216	An ancient and variable mannose-binding lectin from the coral Acropora millepora binds both pathogens and symbionts. Developmental and Comparative Immunology, 2008, 32, 1582-1592.	1.0	170

#	Article	IF	CITATIONS
217	Analytical approach for selecting normalizing genes from a cDNA microarray platform to be used in q-RT-PCR assays: A cnidarian case study. Journal of Proteomics, 2008, 70, 985-991.	2.4	31
218	The effect of thermal history on the susceptibility of reef-building corals to thermal stress. Journal of Experimental Biology, 2008, 211, 1050-1056.	0.8	244
219	A Call to Action for Coral Reefs. Science, 2008, 322, 189-190.	6.0	16
220	Where Species Go, Legal Protections Must Follow. Science, 2008, 322, 1049-1050.	6.0	17
221	Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10444-10449.	3.3	387
222	Assisted Colonization and Rapid Climate Change. Science, 2008, 321, 345-346.	6.0	786
223	Improved predictions of coral bleaching using seasonal baselines and higher spatial resolution. Limnology and Oceanography, 2008, 53, 1369-1375.	1.6	41
224	Genetic connectivity patterns of Pocillopora verrucosa in southern African Marine Protected Areas. Marine Ecology - Progress Series, 2008, 354, 161-168.	0.9	51
225	Effects of ocean acidification on marine ecosystems. Marine Ecology - Progress Series, 2008, 373, 199-201.	0.9	37
226	Coral Disease Diagnostics: What's between a Plague and a Band?. Applied and Environmental Microbiology, 2007, 73, 981-992.	1.4	79
227	A World with Corals: What Will It Take?. Science, 2007, 318, 42-42.	6.0	2
228	Increased Prevalence of Ubiquitous Ascomycetes in an Acropoid Coral (Acropora formosa) Exhibiting Symptoms of Brown Band Syndrome and Skeletal Eroding Band Disease. Applied and Environmental Microbiology, 2007, 73, 2755-2757.	1.4	49
229	Bleaching, energetics, and coral mortality risk: Effects of temperature, light, and sediment regime. Limnology and Oceanography, 2007, 52, 716-726.	1.6	210
230	Comment on "Modernâ€age buildup of CO ₂ and its effects on seawater acidity and salinity― by Hugo A. Loáiciga. Geophysical Research Letters, 2007, 34, .	1.5	36
231	Coral Reefs Under Rapid Climate Change and Ocean Acidification. Science, 2007, 318, 1737-1742.	6.0	4,578
232	Light-Responsive Cryptochromes from a Simple Multicellular Animal, the Coral <i>Acropora millepora</i> . Science, 2007, 318, 467-470.	6.0	236
233	Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Marine Ecology - Progress Series, 2007, 346, 143-152.	0.9	235
234	The hologenome theory disregards the coral holobiont. Nature Reviews Microbiology, 2007, 5, 826-826.	13.6	20

#	Article	IF	CITATIONS
235	Niche partitioning of closely related symbiotic dinoflagellates. Molecular Ecology, 2007, 16, 3721-3733.	2.0	149
236	Analysis of an EST library from the dinoflagellate (<i>Symbiodinium</i> sp.) symbiont of reefâ€building corals ¹ . Journal of Phycology, 2007, 43, 1010-1021.	1.0	109
237	Phase Shifts, Herbivory, and the Resilience of Coral Reefs to Climate Change. Current Biology, 2007, 17, 360-365.	1.8	1,239
238	Are infectious diseases really killing corals? Alternative interpretations of the experimental and ecological data. Journal of Experimental Marine Biology and Ecology, 2007, 346, 36-44.	0.7	253
239	Disease and cell death in white syndrome of Acroporid corals on the Great Barrier Reef. Marine Biology, 2007, 151, 19-29.	0.7	81
240	Predominance of clade D Symbiodinium in shallow-water reef-building corals off Kish and Larak Islands (Persian Gulf, Iran). Marine Biology, 2007, 153, 25-34.	0.7	103
241	Len Muscatine (1932–2007) and his contributions to the understanding of algal-invertebrate endosymbiosis. Coral Reefs, 2007, 26, 731-739.	0.9	10
242	Climate Change and Australian Marine Life. Oceanography and Marine Biology, 2007, , 407-478.	1.0	30
243	Coral microbial ecology under the microscope. Microbiology Australia, 2007, 28, 111.	0.1	Ο
244	The evolutionary history of Symbiodinium and scleractinian hosts—Symbiosis, diversity, and the effect of climate change. Perspectives in Plant Ecology, Evolution and Systematics, 2006, 8, 23-43.	1.1	274
245	Response of holosymbiont pigments from the scleractinian coral <i>Montipora monasteriata</i> to short-term heat stress. Limnology and Oceanography, 2006, 51, 1149-1158.	1.6	114
246	The cell physiology of coral bleaching. Coastal and Estuarine Studies, 2006, , 55-71.	0.4	14
247	Intra-colonial response to Acroporid "white syndrome―lesions in tabular Acropora spp. (Scleractinia). Coral Reefs, 2006, 25, 255-264.	0.9	52
248	Monitoring coral bleaching using a colour reference card. Coral Reefs, 2006, 25, 453-460.	0.9	274
249	Aerial exposure influences bleaching patterns. Coral Reefs, 2006, 25, 452-452.	0.9	14
250	Phototrophic microendoliths bloom during coral "white syndrome― Coral Reefs, 2006, 25, 577-581.	0.9	51
251	Increased mortality and photoinhibition in the symbiotic dinoflagellates of the Indo–Pacific coral Stylophora pistillata (Esper) after summer bleaching. Marine Biology, 2006, 149, 633-642.	0.7	32
252	Fluorescence In Situ Hybridization and Spectral Imaging of Coral-Associated Bacterial Communities. Applied and Environmental Microbiology, 2006, 72, 3016-3020.	1.4	83

#	Article	IF	CITATIONS
253	HF Ocean Surface Radar Monitoring for Coral Bleaching in the Great Barrier Reef. , 2006, , .		2
254	Viruses: agents of coral disease?. Diseases of Aquatic Organisms, 2006, 69, 101-110.	0.5	67
255	ECOLOGY: Complexities of Coral Reef Recovery. Science, 2006, 311, 42-43.	6.0	16
256	Spatial patterns of aerobic and anaerobic mineralization rates and oxygen penetration dynamics in coral reef sediments. Marine Ecology - Progress Series, 2006, 309, 93-105.	0.9	53
257	Coral bleaching following wintry weather. Limnology and Oceanography, 2005, 50, 265-271.	1.6	112
258	Global assessment of coral bleaching and required rates of adaptation under climate change. Global Change Biology, 2005, 11, 2251-2265.	4.2	526
259	The effect of temperature on the size and population density of dinoflagellates in larvae of the reef coral Porites astreoides. Invertebrate Biology, 2005, 124, 185-193.	0.3	30
260	Tolerance of endolithic algae to elevated temperature and light in the coral Montipora monasteriata from the southern Great Barrier Reef. Journal of Experimental Biology, 2005, 208, 75-81.	0.8	58
261	Comment on "Coral reef calcification and climate change: The effect of ocean warmingâ€: Geophysical Research Letters, 2005, 32, .	1.5	27
262	Low coral cover in a high-CO2world. Journal of Geophysical Research, 2005, 110, .	3.3	79
263	Low temperatures cause coral bleaching. Coral Reefs, 2004, 23, 444-444.	0.9	56
264	Coral Reefs and Projections of Future Change. , 2004, , 463-484.		10
265	Cell death and degeneration in the symbiotic dinoflagellates of the coral Stylophora pistillata during bleaching. Marine Ecology - Progress Series, 2004, 272, 117-130.	0.9	113
266	Nutrient-induced perturbations to δ13C and δ15N in symbiotic dinoflagellates and their coral hosts. Marine Ecology - Progress Series, 2004, 280, 105-114.	0.9	38
267	Dynamics of a temperature-related coral disease outbreak. Marine Ecology - Progress Series, 2004, 281, 63-77.	0.9	120
268	Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Marine Ecology - Progress Series, 2004, 284, 147-161.	0.9	312
269	Kinetics of photoacclimation in corals. Oecologia, 2003, 134, 23-31.	0.9	118
270	Symbiont diversity within the widespread scleractinian coral Plesiastrea versipora , across the northwestern Pacific. Marine Biology, 2003, 143, 501-509.	0.7	30

#	Article	IF	CITATIONS
271	Genetic variation of the scleractinian coral Stylophora pistillata, from western Pacific reefs. Coral Reefs, 2003, 22, 17-22.	0.9	37
272	The 2.2 Ã Crystal Structure of a Pocilloporin Pigment Reveals a Nonplanar Chromophore Conformation. Structure, 2003, 11, 275-284.	1.6	127
273	Variation in coral photosynthesis, respiration and growth characteristics in contrasting light microhabitats: an analogue to plants in forest gaps and understoreys?. Functional Ecology, 2003, 17, 246-259.	1.7	191
274	The production, purification and crystallization of a pocilloporin pigment from a reef-forming coral. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 597-599.	2.5	19
275	Deconvolving the δ18O seawater component from subseasonal coral δ18O and Sr/Ca at Rarotonga in the southwestern subtropical Pacific for the period 1726 to 1997. Geochimica Et Cosmochimica Acta, 2003, 67, 1609-1621.	1.6	105
276	Climate Change, Human Impacts, and the Resilience of Coral Reefs. Science, 2003, 301, 929-933.	6.0	3,124
277	Highly organized structure in the non-coding region of the psbA minicircle from clade C Symbiodinium. International Journal of Systematic and Evolutionary Microbiology, 2003, 53, 1725-1734.	0.8	69
278	Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnology and Oceanography, 2003, 48, 2046-2054.	1.6	403
279	Photosynthetic responses of the coral Montipora digitata to cold temperature stress. Marine Ecology - Progress Series, 2003, 248, 85-97.	0.9	140
280	The phylogeography and connectivity of the latitudinally widespread scleractinian coral Plesiastrea versipora in the Western Pacific. Molecular Ecology, 2002, 11, 1177-1189.	2.0	66
281	Is coral bleaching really adaptive?. Nature, 2002, 415, 601-602.	13.7	89
282	Ecological responses to recent climate change. Nature, 2002, 416, 389-395.	13.7	7,926
283	A test of the ashßšfree dry weight technique on the developmental stages of Patiriella spp. (Echinodermata: Asteroidea). Limnology and Oceanography, 2001, 46, 1214-1220.	1.6	5
284	Major colour patterns of reef-building corals are due to a family of GFP-like proteins. , 2001, 19, 197-204.		218
285	Latitudinal variability in symbiont specificity within the widespread scleractinian coral Plesiastrea versipora. Marine Biology, 2001, 138, 1175-1181.	0.7	126
286	Panmixia in Pocillopora verrucosa from South Africa. Marine Biology, 2001, 139, 175-181.	0.7	60
287	Diurnal changes in the photochemical efficiency of the symbiotic dinoflagellates (Dinophyceae) of corals: photoprotection, photoinactivation and the relationship to coral bleaching. Plant, Cell and Environment, 2001, 24, 89-99.	2.8	184
288	ENCORE: The Effect of Nutrient Enrichment on Coral Reefs. Synthesis of Results and Conclusions. Marine Pollution Bulletin, 2001, 42, 91-120.	2.3	371

#	Article	IF	CITATIONS
289	Response of a scleractinian coral, Stylophora pistillata, to iron and nitrate enrichment. Journal of Experimental Marine Biology and Ecology, 2001, 259, 249-261.	0.7	93
290	Genetic variability of the symbiotic dinoflagellates from the wide ranging coral species Seriatopora hystrix and Acropora longicyathus in the Indo-West Pacific. Marine Ecology - Progress Series, 2001, 222, 97-107.	0.9	124
291	Sizing the impact: Coral reef ecosystems as early casualties of climate change. , 2001, , 203-228.		1
292	Fluorescent pigments in corals are photoprotective. Nature, 2000, 408, 850-853.	13.7	579
293	Global climate change and the thermal tolerance of corals. Journal of the Japanese Coral Reef Society, 2000, 2000, 1-11.	0.1	42
294	Changes in quantum efficiency of Photosystem II of symbiotic dinoflagellates of corals after heat stress, and of bleached corals sampled after the 1998 Great Barrier Reef mass bleaching event. Marine and Freshwater Research, 2000, 51, 63.	0.7	103
295	Net uptake of dissolved free amino acids by the giant clam, Tridacna maxima : alternative sources of energy and nitrogen?. Coral Reefs, 1999, 18, 91-96.	0.9	12
296	Availability of two forms of dissolved nitrogen to the coral Pocillopora damicornis and its symbiotic zooxanthellae. Marine Biology, 1999, 133, 561-570.	0.7	64
297	Influence of field-based nutrient enrichment on the photobiology of the giant clam Tridacna maxima. Marine Biology, 1999, 133, 659-664.	0.7	7
298	PAM Chlorophyll Fluorometry: a New in situ Technique for Stress Assessment in Scleractinian Corals, used to Examine the Effects of Cyanide from Cyanide Fishing. Marine Pollution Bulletin, 1999, 38, 864-874.	2.3	122
299	The energetics of development of three congeneric seastars (Patiriella Verrill, 1913) with different types of development. Journal of Experimental Marine Biology and Ecology, 1999, 235, 1-20.	0.7	13
300	Climate change, coral bleaching and the future of the world's coral reefs. Marine and Freshwater Research, 1999, 50, 839.	0.7	2,783
301	Sweeper Polyps of the Coral Goniopora tenuidens (Scleractinia: Poritidae). Invertebrate Biology, 1999, 118, 1.	0.3	19
302	Effects of cyanide on coral photosynthesis:implications for identifying the cause of coral bleaching and for assessing the environmental effects of cyanide fishing. Marine Ecology - Progress Series, 1999, 177, 83-91.	0.9	73
303	Photoinhibition and photoprotection in symbiotic dinoflagellates from reef-building corals. Marine Ecology - Progress Series, 1999, 183, 73-86.	0.9	199
304	Amino acid synthesis in the symbiotic sea anemone Aiptasia pulchella. Marine Biology, 1998, 131, 83-93.	0.7	57
305	Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant, Cell and Environment, 1998, 21, 1219-1230.	2.8	588
306	Development of the hyaline layer around the planktonic embryos and larvae of the asteroid <i>Patiriella calcar</i> and the presence of associated bacteria. Invertebrate Reproduction and Development, 1997, 31, 337-343.	0.3	19

#	Article	IF	CITATIONS
307	Size At Sexual Maturity and the Reproductive Biology of Two Species of Scyllarid Lobster From New South Wales and Victoria, Australia. Crustaceana, 1997, 70, 344-367.	0.1	12
308	Energy Use During the Development of a Lecithotrophic and a Planktotrophic Echinoid. Biological Bulletin, 1997, 192, 27-40.	0.7	73
309	EFFECTS OF EGG SIZE ON POSTLARVAL PERFORMANCE: EXPERIMENTAL EVIDENCE FROM A SEA URCHIN. Evolution; International Journal of Organic Evolution, 1997, 51, 141-152.	1.1	136
310	Effects of Egg Size on Postlarval Performance: Experimental Evidence from a Sea Urchin. Evolution; International Journal of Organic Evolution, 1997, 51, 141.	1.1	50
311	Effect of nutrient enrichment in the field on the biomass, growth and calcification of the giant clam Tridacna maxima. Marine Biology, 1997, 129, 635-642.	0.7	11
312	Nutrient enrichment and the ultrastructure of zooxanthellae from the giant clam Tridacna maxima. Marine Biology, 1996, 125, 359-363.	0.7	24
313	Sources of Energy for Increased Metabolic Demand During Metamorphosis of the Abalone Haliotis rufescens (Mollusca). Biological Bulletin, 1996, 191, 402-412.	0.7	60
314	Free amino acids exhibit anthozoan "host factor" activity: they induce the release of photosynthate from symbiotic dinoflagellates in vitro Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 7430-7434.	3.3	126
315	Ecological and physiological differences between two colour morphs of the coral Pocillopora damicornis. Marine Biology, 1995, 123, 705-714.	0.7	58
316	An optimal strategy for sampling oocytes in female Balmain BugsIbacus peroniileach (Decapoda:) Tj ETQq0 0 0 r	gBT /Over 0.3	lock 10 Tf 50
317	Isolation and Partial Characterization of the Pink and Blue Pigments of Pocilloporid and Acroporid Corals. Biological Bulletin, 1995, 189, 288-297.	0.7	84
318	Temperature, Food Availability, and the Development of Marine Invertebrate Larvae. American Zoologist, 1995, 35, 415-425.	0.7	184
319	Coulometric Measurement Of Oxygen Consumption During Development Of Marine Invertebrate Embryos And Larvae. Journal of Experimental Biology, 1995, 198, 19-30.	0.8	64
320	Periodic mass-bleaching and elevated sea temperatures:bleaching of outer reef slope communities in Moorea, French Polynesia. Marine Ecology - Progress Series, 1995, 121, 181-190.	0.9	182
321	Uptake of dissolved organic matter by larval stage of the crown-of-thorns starfish Acanthaster planci. Marine Biology, 1994, 120, 55-63.	0.7	36
322	Host-Zooxanthella Interactions in Four Temperate Marine Invertebrate Symbioses: Assessment of Effect of Host Extracts on Symbionts. Biological Bulletin, 1990, 178, 175-186.	0.7	99
323	The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriatopora hystrix Dana. Journal of Experimental Marine Biology and Ecology, 1989, 129, 279-303.	0.7	438
324	Influence of the population density of zooxanthellae and supply of ammonium on the biomass and metabolic characteristics of the reef corals Seriatopora hystrix and Stylophora pistillata. Marine Ecology - Progress Series, 1989, 57, 173-186.	0.9	171

#	Article	IF	CITATIONS
325	A method for determining the surface area of corals. Coral Reefs, 1988, 7, 113-116.	0.9	60
326	Expulsion of zooxanthellae by symbiotic cnidarians from the Red Sea. Coral Reefs, 1987, 5, 201-204.	0.9	111
327	Studies on a nudibranch that contains zooxanthellae. I. Photosynthesis, respiration and the translocation of newly fixed carbon by zooxanthellae in Pteraeolidia ianthina. Proceedings of the Royal Society of London Series B, Containing Papers of A Biological Character, 1986, 228, 493-509.	1.8	29
328	Studies on a nudibranch that contains zooxanthellae. II. Contribution of zooxanthellae to animal respiration (CZAR) in Pteraeolidia ianthina with high and low densities of zooxanthellae. Proceedings of the Royal Society of London Series B, Containing Papers of A Biological Character, 1986, 228, 511-521.	1.8	18
329	Technical Summary. , 0, , 15-34.		0
330	Cross-Chapter Boxes. , 0, , 97-166.		11
331	Detection and Attribution of Observed Impacts. , 0, , 979-1038.		10
332	Projecting the current trajectory for coral reefs. , 0, , 242-260.		4