Hamed Azimi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12020735/publications.pdf

Version: 2024-02-01

27 papers

3,566 citations

394421 19 h-index 28 g-index

28 all docs 28 docs citations

28 times ranked

6378 citing authors

#	Article	IF	CITATIONS
1	Detection of X-ray photons by solution-processed lead halide perovskites. Nature Photonics, 2015, 9, 444-449.	31.4	916
2	Recombination Dynamics as a Key Determinant of Open Circuit Voltage in Organic Bulk Heterojunction Solar Cells: A Comparison of Four Different Donor Polymers. Advanced Materials, 2010, 22, 4987-4992.	21.0	368
3	High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes. Nanoscale, 2015, 7, 1642-1649.	5.6	300
4	Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene–Diimide Heterojunctions toward High Performance. Chemistry of Materials, 2015, 27, 227-234.	6.7	233
5	Exciton diffusion length in narrow bandgap polymers. Energy and Environmental Science, 2012, 5, 6960.	30.8	207
6	Towards low-cost, environmentally friendly printed chalcopyrite and kesterite solar cells. Energy and Environmental Science, 2014, 7, 1829-1849.	30.8	187
7	Fabrication, Optical Modeling, and Color Characterization of Semitransparent Bulkâ€Heterojunction Organic Solar Cells in an Inverted Structure. Advanced Functional Materials, 2010, 20, 1592-1598.	14.9	182
8	Improved High-Efficiency Perovskite Planar Heterojunction Solar Cells via Incorporation of a Polyelectrolyte Interlayer. Chemistry of Materials, 2014, 26, 5190-5193.	6.7	178
9	Nanomorphology and Charge Generation in Bulk Heterojunctions Based on Lowâ€Bandgap Dithiophene Polymers with Different Bridging Atoms. Advanced Functional Materials, 2010, 20, 1180-1188.	14.9	173
10	A Universal Interface Layer Based on an Amineâ€Functionalized Fullerene Derivative with Dual Functionality for Efficient Solution Processed Organic and Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1401692.	19.5	144
11	Charge Transport and Recombination in Lowâ€Bandgap Bulk Heterojunction Solar Cell using Bisâ€adduct Fullerene. Advanced Energy Materials, 2011, 1, 1162-1168.	19.5	108
12	Field-Independent Charge Photogeneration in PCPDTBT/PC ₇₀ BM Solar Cells. Journal of Physical Chemistry Letters, 2010, 1, 3306-3310.	4.6	88
13	Inverted, Environmentally Stable Perovskite Solar Cell with a Novel Lowâ€Cost and Waterâ€Free PEDOT Holeâ€Extraction Layer. Advanced Energy Materials, 2015, 5, 1500543.	19.5	81
14	The role of alkane dithiols in controlling polymer crystallization in small band gap polymer:Fullerene solar cells. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 717-724.	2.1	73
15	Effective Ligand Engineering of the Cu ₂ ZnSnS ₄ Nanocrystal Surface for Increasing Hole Transport Efficiency in Perovskite Solar Cells. Advanced Functional Materials, 2016, 26, 8300-8306.	14.9	72
16	Effective Ligand Passivation of Cu ₂ O Nanoparticles through Solid-State Treatment with Mercaptopropionic Acid. Journal of the American Chemical Society, 2014, 136, 7233-7236.	13.7	57
17	Relation of Nanostructure and Recombination Dynamics in a Lowâ€Temperature Solutionâ€Processed CulnS ₂ Nanocrystalline Solar Cell. Advanced Energy Materials, 2013, 3, 1589-1596.	19.5	38
18	Low-Temperature Solution-Processed Kesterite Solar Cell Based on in Situ Deposition of Ultrathin Absorber Layer. ACS Applied Materials & Samp; Interfaces, 2015, 7, 21100-21106.	8.0	28

#	Article	IF	CITATIONS
19	Morphology Related Photodegradation of Lowâ€Bandâ€Gap Polymer Blends. Advanced Energy Materials, 2014, 4, 1400497.	19.5	27
20	Facile synthesis and post-processing of eco-friendly, highly conductive copper zinc tin sulphide nanoparticles. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	19
21	Determining the internal quantum efficiency of organic Bulk Heterojunctions based on mono and bis–adduct fullerenes as acceptor. Solar Energy Materials and Solar Cells, 2011, 95, 3093-3098.	6.2	17
22	Nano-morphology characterization of organic bulk heterojunctions based on mono and bis-adduct fullerenes. Organic Electronics, 2012, 13, 1315-1321.	2.6	16
23	Accelerated degradation of Al3+ doped ZnO thin films using damp heat test. Organic Electronics, 2014, 15, 569-576.	2.6	16
24	Probing the Nanoscale Phase Separation and Photophysics Properties of Lowâ€Bandgap Polymer:Fullerene Blend Film by Nearâ€Field Spectroscopic Mapping. Small, 2011, 7, 2793-2800.	10.0	14
25	In-situ X-ray diffraction analysis of the recrystallization process in Cu 2 ZnSnS 4 nanoparticles synthesised by hot-injection. Thin Solid Films, 2015, 582, 269-271.	1.8	10
26	A facile one-step method to reduce surface impurities in solution-processed CuInS ₂ nanocrystal solar cells. Journal of Materials Chemistry A, 2015, 3, 14116-14120.	10.3	7
27	Elucidating the Excitedâ€State Properties of CulnS ₂ Nanocrystals upon Phase Transformation: <i>Quasi</i> àêQuantum Dots Versus Bulk Behavior. Advanced Electronic Materials, 2015, 1, 1500040.	5.1	5