Ryosuke Shimizu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12019752/publications.pdf

Version: 2024-02-01

51	1,542	20	39
papers	citations	h-index	g-index
51	51	51	1197 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Ultrafast measurement of a single-photon wave packet using an optical Kerr gate. Optics Express, 2022, 30, 4999.	3.4	6
2	Quantum optical synthesis in 2D time–frequency space. APL Photonics, 2021, 6, 086104.	5.7	11
3	Mid-infrared spectrally-uncorrelated biphotons generation from doped PPLN: a theoretical investigation. Optics Express, 2021, 29, 256.	3.4	13
4	Spectrally uncorrelated biphotons generated from "the family of BBO crystal― Quantum Engineering, 2020, 2, e38.	2.5	13
5	Generation of pseudo-sunlight via quantum entangled photons and the interaction with molecules. Physical Review Research, 2020, 2, .	3.6	10
6	Group key agreement over free-space optical links. OSA Continuum, 2020, 3, 2525.	1.8	4
7	Theoretical Investigation of a Spectrally Pure-State Generation from Isomorphs of KDP Crystal at Near-Infrared and Telecom Wavelengths. Physical Review Applied, 2019, 11, .	3.8	18
8	Direct generation of frequency-bin entangled photons via two-period quasi-phase-matched parametric downconversion. Optics Express, 2019, 27, 1416.	3.4	29
9	Free-space optical secret key agreement with post-selection based on channel state information. , 2019, , .		1
10	Free space optical secret key agreement. Optics Express, 2018, 26, 23305.	3.4	14
11	Time-Frequency Duality of Biphotons for Quantum Optical Synthesis. Physical Review Applied, 2018, 10, .	3.8	19
12	Free-space optical wiretap channel and experimental secret key agreement in 78 km terrestrial link. Optics Express, 2018, 26, 19513.	3.4	21
13	Extended Wiener–Khinchin theorem for quantum spectral analysis. Optica, 2018, 5, 93.	9.3	34
14	Quantum manipulation of biphoton spectral distributions in a 2D frequency space toward arbitrary shaping of a biphoton wave packet. Optics Express, 2018, 26, 21153.	3.4	14
15	Quantum interferometric spectroscopy., 2018,,.		0
16	Monotonic quantum-to-classical transition enabled by positively correlated biphotons. Physical Review A, 2017, 95, .	2.5	8
17	Quantum photonic network and physical layer security. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160243.	3.4	6
18	Detection-dependent six-photon Holland-Burnett state interference. Scientific Reports, 2016, 6, 36914.	3.3	19

#	Article	IF	CITATIONS
19	Simple method of generating and distributing frequency-entangled qudits. Quantum Science and Technology, 2016, 1, 015004.	5.8	40
20	Free-space optical channel estimation for physical layer security. Optics Express, 2016, 24, 8940.	3.4	43
21	Spectrally resolved Hong-Ou-Mandel interference between independent photon sources. Optics Express, 2015, 23, 28836.	3.4	45
22	Highly efficient entanglement swapping and teleportation at telecom wavelength. Scientific Reports, 2015, 5, 9333.	3.3	61
23	Spectral properties of broadband biphotons generated from PPMgSLT under a type-II phase-matching condition. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 550.	2.1	13
24	Efficient detection of an ultra-bright single-photon source using superconducting nanowire single-photon detectors. Optics Communications, 2015, 336, 47-54.	2.1	18
25	Efficient Generation of Twin Photons at Telecom Wavelengths with 10 GHz Repetition-Rate-Tunable Comb Laser. , 2015, , .		0
26	Pulsed Sagnac polarization-entangled photon source with a PPKTP crystal at telecom wavelength. Optics Express, 2014, 22, 11498.	3.4	100
27	Efficient generation of twin photons at telecom wavelengths with 2.5â€GHz repetition-rate-tunable comb laser. Scientific Reports, 2014, 4, 7468.	3.3	32
28	Pulsed Sagnac polarization-entangled photon source with a PPKTP crystal at telecom wavelength. , 2014, , .		0
29	Widely tunable single photon source with high purity at telecom wavelength. Optics Express, 2013, 21, 10659.	3.4	127
30	Nonclassical interference between independent intrinsically pure single photons at telecommunication wavelength. Physical Review A, 2013, 87, .	2.5	35
31	Widely-tunable, spectrally pure, high efficient photon pairs generation at telecom wavelength. , 2013, ,		0
32	Entangled-state generation with an intrinsically pure single-photon source and a weak coherent source. Physical Review A, 2013, 88, .	2.5	10
33	Entangled photon generation in two-period quasi-phase-matched parametric down-conversion. Optics Express, 2012, 20, 5508.	3.4	30
34	Four-photon quantum interferometry at a telecom wavelength. Physical Review A, 2012, 86, .	2.5	20
35	Up-conversion dynamics for temporally entangled two-photon pulses. Physical Review A, 2011, 83, .	2.5	5
36	High-visibility nonclassical interference between intrinsically pure heralded single photons and photons from a weak coherent field. Physical Review A, $2011,83,\ldots$	2.5	32

3

#	Article	IF	Citations
37	Photon pair sources with controlled frequency correlation. Progress in Informatics, 2011, , 19.	0.2	20
38	Efficient Up-Conversion Detection of 1550 nm Photons Using Bulk Periodically-Poled LiNbO3. Japanese Journal of Applied Physics, 2010, 49, 040213.	1.5	1
39	Multimode Theory of Up-Conversion of Two Photons. Journal of the Physical Society of Japan, 2009, 78, 054401.	1.6	3
40	Generation of Cross-Polarized Photon Pairs via Type-II Third-Order Quasi-Phase Matched Parametric Down-Conversion. Japanese Journal of Applied Physics, 2009, 48, 050205.	1.5	2
41	Observation of optical-fibre Kerr nonlinearity at the single-photon level. Nature Photonics, 2009, 3, 95-98.	31.4	125
42	High-flux and broadband biphoton sources†with controlled frequency entanglement. Optics Express, 2009, 17, 16385.	3.4	35
43	All-optical phase modulations in a silicon wire waveguide at ultralow light levels. Applied Physics Letters, 2009, 95, .	3.3	17
44	800-nm Band Cross-Polarized Photon Pair Source Using Type-II Parametric Down-Conversion in Periodically Poled Lithium Niobate. Japanese Journal of Applied Physics, 2007, 46, L1064-L1067.	1.5	8
45	Lossless all-optical phase gate using a polarization-division Sagnac interferometer applicable to a waveguide-type Kerr medium. Applied Physics Letters, 2007, 91, 171119.	3.3	10
46	Photon Polarization Entanglement Induced by Biexciton: Experimental Evidence for Violation of Bell's Inequality. Physical Review Letters, 2007, 98, 140503.	7.8	46
47	Quantum diffraction and interference of spatially correlated photon pairs and its Fourier-optical analysis. Physical Review A, 2006, 74, .	2.5	28
48	Generation of entangled photons via biexciton-resonant hyper-parametric scattering., 2005, 5722, 15.		0
49	Generation of ultraviolet entangled photons in a semiconductor. Nature, 2004, 431, 167-170.	27.8	174
50	Quantum diffraction and interference of spatially correlated photon pairs generated by spontaneous parametric down-conversion. Physical Review A, 2003, 67, .	2.5	37
51	Measurement of the Photonic de Broglie Wavelength of Entangled Photon Pairs Generated by Spontaneous Parametric Down-Conversion. Physical Review Letters, 2002, 89, 213601.	7.8	185